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Abstract

Contrastive  language-image  pre-training  (CLIP)
achieves promising results in 2D zero-shot and few-shot
learning.  Despite the impressive performance in 2D
tasks, applying CLIP to help the learning in 3D scene
understanding has yet to be explored. In this paper, we
make the first attempt to investigate how CLIP knowledge
benefits 3D scene understanding. To this end, we propose
CLIP2Scene, a simple yet effective framework that transfers
CLIP knowledge from 2D image-text pre-trained models to
a 3D point cloud network. We show that the pre-trained
3D network yields impressive performance on various
downstream tasks, i.e., annotation-free and fine-tuning
with labelled data for semantic segmentation. Specifically,
built upon CLIP, we design a Semantic-driven Cross-modal
Contrastive Learning framework that pre-trains a 3D
network via semantic and spatial-temporal consistency
regularization. For semantic consistency regularization, we
first leverage CLIP’s text semantics to select the positive
and negative point samples and then employ the contrastive
loss to train the 3D network. In terms of spatial-temporal
consistency regularization, we force the consistency be-
tween the temporally coherent point cloud features and
their corresponding image features. We conduct experi-
ments on the nuScenes and SemanticKITTI datasets. For
the first time, our pre-trained network achieves annotation-
free 3D semantic segmentation with 20.8% mloU. When
fine-tuned with 1% or 100% labelled data, our method
significantly outperforms other self-supervised methods,
with improvements of 8% and 1% mloU, respectively.
Furthermore, we demonstrate its generalization capability
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Figure 1. We explore whether and how CLIP knowledge benefits
3D scene understanding. To this end, we propose CLIP2Scene, a
semantic-driven cross-modal contrastive learning framework that
leverages CLIP knowledge to pre-train a 3D point cloud seg-
mentation network via semantic and spatial-temporal consistency
regularization. CLIP2Scene yields impressive performance on
annotation-free 3D semantic segmentation and significantly out-
performs other self-supervised methods when fine-tuning on an-
notated data.

for handling cross-domain datasets.

1. Introduction

3D scene understanding is fundamental in autonomous
driving, robot navigation, etc [24, 26]. Current deep



learning-based methods have shown inspirational perfor-
mance on 3D point cloud data [37, 50, 29, 44, 15, 45].
However, some drawbacks hinder their real-world applica-
tions. The first one comes from their heavy reliance on the
large collection of the annotated point clouds, especially
when high-quality 3D annotations are expensive to acquire
[34, 40]. Besides, they typically fail to recognize novel ob-
jects that are never seen in the training data [11, 35]. As
a result, it may need extra annotation efforts to train the
model on recognizing these novel objects, which is both te-
dious and time-consuming.

Contrastive Vision-Language Pre-training (CLIP) [38]
provides a new perspective that mitigates the above issues
in 2D vision. It was trained on large-scale free-available
image-text pairs from websites and built vision-language
correlation to achieve promising open-vocabulary recogni-
tion. MaskCLIP [49] further explores semantic segmen-
tation based on CLIP. With minimal modifications to the
CLIP pre-trained network, MaskCLIP can be directly used
for the semantic segmentation of novel objects without ad-
ditional training efforts. PointCLIP [48] reveals that the
zero-shot classification ability of CLIP can be generalized
from the 2D image to the 3D point cloud. It perspectively
projects a point cloud frame into different views of 2D depth
maps that bridge the modal gap between the image and
the point cloud. The above studies indicate the potential
of CLIP on enhancing the 2D segmentation and 3D clas-
sification performance. However, whether and how CLIP
knowledge benefits 3D scene understanding is still under-
explored.

In this paper, we explore how to leverage CLIP’s 2D
image-text pre-learned knowledge for 3D scene understand-
ing. Previous cross-modal knowledge distillation methods
[40, 34] suffer from the optimization-conflict issue, i.e.,
some of the positive pairs are regarded as negative sam-
ples for contrastive learning, leading to unsatisfactory rep-
resentation learning and hammering the performance of
downstream tasks. Besides, they also ignore the tempo-
ral coherence of the multi-sweep point cloud, failing to
utilize the rich inter-sweep correspondence. To handle
the mentioned problems, we propose a novel Semantic-
driven Cross-modal Contrastive Learning framework that
fully leverages CLIP’s semantic and visual information to
regularize a 3D network. Specifically, we propose Seman-
tic Consistency Regularization and Spatial-Temporal Con-
sistency Regularization. In semantic consistency regular-
ization, we utilize CLIP’s text semantics to select the posi-
tive and negative point samples for less-conflict contrastive
learning. For spatial-temporal consistency regularization,
we take CLIP’s image pixel feature to impose a soft con-
straint on points within local space and time. Such oper-
ation also prevents the network from degenerating due to
image-to-point calibration errors.

We conduct several downstream tasks on nuScenes to
verify how the pre-trained network benefits the 3D scene
understanding. The first one is annotation-free semantic
segmentation. Following MaskCLIP, we place class names
into multiple hand-crafted templates as prompts and av-
erage the text embeddings generated by CLIP to conduct
the annotation-free segmentation. For the first time, our
method achieves 20.8% mloU annotation-free 3D semantic
segmentation without any labelled data for training. Sec-
ondly, we compare with other self-supervised methods to
verify the superiority of our method in label-efficient learn-
ing. When fine-tuning the 3D network with 1% or 100% la-
belled data, our method significantly outperforms state-of-
the-art self-supervised methods, with improvements of 8%
and 1% mloU, respectively. Besides, to verify the general-
ization capability, we pre-train the network on the nuScenes
dataset and evaluate it on the SemanticKITTI dataset. Our
method still significantly outperforms state-of-the-art meth-
ods.

The contributions of our work are summarized as fol-
lows.

* The first work that distils CLIP knowledge to a 3D net-
work for 3D scene understanding.

* We propose a novel Semantic-driven Cross-modal
Contrastive Learning framework that pre-trains a 3D
network via spatial-temporal and semantic consistency
regularization.

e We propose a novel Semantic-guided Spatial-
Temporal Consistency Regularization that forces the
consistency between the temporally coherent point
cloud features and their corresponding image features.

e For the first time, our method achieves promising
performance on annotation-free 3D scene segmenta-
tion and significantly outperforms state-of-the-art self-
supervised methods when fine-tuning with labelled
data.

2. Related Work

Zero-shot Learning in 3D. The objective of zero-shot
learning (ZSL) is to recognize objects that are unseen in
the training set. Many efforts have been devoted to the 2D
recognition tasks [8, 30, 47, 36, 31, 1,43, 32, 4,2, 19, 33,

], and few works concentrate on performing ZSL in the
3D domain [18, 11, 35, 16, 17]. [18] makes the first at-
tempt to apply ZSL to 3D tasks, where they train PointNet
[37] on ’seen” samples and test on “unseen” samples. Sub-
sequent work [16] addresses the hubness problem caused
by the low-quality point cloud features. [17] proposes the
triplet loss to boost the performance under the transductive
setting, where the “unseen” class is observed and unlabeled
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Figure 2. Illustration of the Semantic-driven Cross-modal Contrastive Learning. Firstly, we obtain the text embeddings ¢;, image pixel
feature z;, and point feature p; by text encoder, image encoder, and point encoder, respectively. Secondly, we leverage CLIP knowledge to
construct positive and negative samples for contrastive learning. Thus we obtain point-text pairs {x;, tz}f\i 1 and all pixel-point-text pairs
in a short temporal {27, p¥, t& }?i’l{(k:r Here, {z;,t;}22; and {2F, p¥, ¢¥ }i\ifk:l are used for Semantic Consistency Regularization and
Spatial-Temporal Consistency Regularization, respectively. Lastly, we perform Semantic Consistency Regularization by pulling the point
features to their corresponding text embedding and Spatial-Temporal Consistency Regularization by mimicking the temporally coherent

point features to their corresponding pixel features.

in the training phase. Recently, some studies introduced
CLIP into zero-shot learning. MaskCLIP [49] investigates
the problem of utilizing CLIP to help the 2D dense pre-
diction tasks and exhibits encouraging zero-shot semantic
segmentation performance. PointCLIP [48] is the pioneer-
ing work that applies CLIP to 3D recognition. As opposed
to previous approaches that require training on the labelled
point cloud, PointCLIP is free from any 3D training and
shows impressive performance on zero-shot and few-shot
classification tasks. Our work takes a step further to inves-
tigate whether the rich semantic and visual knowledge in
CLIP can benefit the 3D semantic segmentation tasks.

Self-supervised Representation Learning. The purpose
of self-supervised learning is to learn a good representa-
tion that benefits the downstream tasks. The dominant ap-
proaches resort to contrastive learning to pre-train the net-
work [27,25,21,20, 14, 13,7, 10, 12, 9]. Recently, inspired
by the success of CLIP, leveraging the pre-trained model
of CLIP to the downstream tasks has raised the commu-
nity’s attention. DenseCLIP [39] utilizes the CLIP’s pre-
trained knowledge for dense image pixel prediction. Det-
CLIP [46] proposes a pre-training method equipped with
CLIP for open-world detection. In this paper, we make the
first attempt to pre-train a 3D network with CLIP’s knowl-
edge for 3D scene understanding.

Cross-modal Knowledge Distillation. Recently, an in-

creasing number of researchers have focused on transferring
the knowledge in 2D images to 3D point cloud [34, 40].
PPKT [34] proposes the contrastive pixel-to-point knowl-
edge transfer to utilize the rich information in image back-
bones. SLidR [40] resorts to the InfoNCE loss to help the
3D network distil rich knowledge from the 2D image back-
bone. Our work explores leveraging the image-text pre-
trained CLIP knowledge to help 3D scene understanding.

3. Methodology

Considering the impressive open-vocabulary perfor-
mance achieved by CLIP in image classification and seg-
mentation, natural curiosities have been raised. Can CLIP
endow the ability to a 3D network for annotation-free
scene understanding? And further, will it promote the
network performance when fine-tuned on labelled data?
To answer the above questions, we study the cross-modal
knowledge transfer of CLIP for 3D scene understanding,
termed CLIP2Scene. Our work is a pioneer in exploiting
CLIP knowledge for 3D scene understanding. In what fol-
lows, we revisit the CLIP applied in 2D open-vocabulary
classification and semantic segmentation, then present our
CLIP2Scene in detail. Our approach consists of three
major components: Semantic Consistency Regularization,
Semantic-Guided Spatial-Temporal Consistency Regular-
ization, and Switchable Self-Training Strategy.
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Figure 3. Illustration of the image pixel-to-text mapping. The
dense pixel-text correspondence {xi,ti}f‘il is extracted by the
off-the-shelf method MaskCLIP [49].

3.1. Revisiting CLIP

Contrastive Vision-Language Pre-training (CLIP) miti-
gates the following drawbacks that dominate the computer
vision field: 1. Deep models need a large amount of for-
matted and labelled training data, which is expensive to ac-
quire; 2. The model’s generalization ability is weak, mak-
ing it difficult to migrate to a new scenario with unseen
objects. CLIP consists of an image encoder (ResNet [28]
or ViT [6]) and a text encoder (Transformer [42]), both
respectively project the image and text representation to a
joint embedding space. During training, CLIP constructs
positive and negative samples from 400 million image-text
pairs to train both encoders with a contrastive loss, where
the large-scale image-text pairs are free-available from the
Internet and assumed to contain every class of images and
most concepts of text. Therefore, CLIP can achieve promis-
ing open-vocabulary recognition.

For 2D zero-shot classification, CLIP first places the
class name into a pre-defined template to generate the text
embeddings and then encodes images to obtain image em-
beddings. Next, it calculates the similarity matrices be-
tween images and text embeddings to determine the class.
MaskCLIP further extends CLIP into 2D semantic segmen-
tation. Specifically, MaskCLIP modifies the attention pool-
ing layer of the CLIP’s image encoder, thus performing
pixel-level mask prediction instead of the global image-

level prediction.

3.2. CLIP2Scene

As shown in Fig. 2, we first leverage CLIP and 3D net-
work to respectively extract the text embeddings, image
pixel feature and point feature. Secondly, we construct
positive and negative samples based on CLIP’s knowledge.
Lastly, we impose Semantic Consistency Regularization by
pulling the point features to their corresponding text embed-
ding. At the same time, we apply Spatial-Temporal Con-
sistency Regularization by forcing the consistency between
temporally coherent point features and their corresponding
pixel features. In what follows, we present the details and
insights.

3.2.1 Semantic Consistency Regularization

As CLIP is pre-trained on 2D images and text, our first con-
cern is the domain gap between 2D images and the 3D point
cloud. To this end, we build dense pixel-point correspon-
dence and transfer image knowledge to the 3D point cloud
via the pixel-point pairs. Specifically, we calibrate the Li-
DAR point cloud with corresponding images captured by
six cameras. Therefore, the dense pixel-point correspon-
dence {z;,p;}, can be obtained accordingly, where z;
and p; indicates i-th paired image feature and point feature,
which are respectively extracted by the CLIP’s image en-
coder and the 3D network. M is the number of pairs. Note
that it is an online operation and is irreverent to the image
and point data augmentation.

Previous methods [40, 34] provide a promising solution
to cross-modal knowledge transfer. They first construct
positive pixel-point pairs {z;, p;}*£, and negative pairs
{zi,p;j}(¢ # j), and then pull in the positive pairs while
pushing away the negative pairs in the embedding space via
the InfoNCE loss. Despite the encourageable performance
of previous methods in transferring cross-modal knowl-
edge, they are both confronted with the same optimization-
conflict issue. For example, suppose ¢-th pixel x; and j-th
point p; are in the different positions of the same instance
with the same semantics. However, the InfoNCE loss will
try to push them away, which is unreasonable and ham-
mer the performance of the downstream tasks [40]. In light
of this, we propose a Semantic Consistency Regularization
that leverages the CLIP’s semantic information to allevi-
ate this issue. Specifically, we generate the dense pixel-
text pairs {x;,t; }, by following the off-the-shelf method
MaskCLIP [49] (Fig. 3), where ¢; is the text embedding gen-
erated from the CLIP’s text encoder. Note that the pixel-text
mappings are free-available from CLIP without any addi-
tional training. We then transfer pixel-text pairs to point-
text pairs {p;,t;}22, and utilize the text semantics to se-
lect the positive and negative point samples for contrastive
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Figure 4. Illustration of the image pixel-to-point mapping (left)
and semantic-guided fusion feature generation (right). We build
the grid-wise correspondence between an image I and the tem-
porally coherent LiDAR point cloud { Py}, within S seconds
and generate semantic-guided fusion features for individual grids.
Both {xf,ﬁf}ﬁ‘ﬁzl and { f, }3_, are used to perform Spatial-
Temporal Consistency Regularization.

learning. The objective function is as follows:
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where t; € c indicates that ¢; is generated by c-th classes
name, and C is the number of classes. D denotes the scalar
product operation and T is a temperature term (7 > 0).

Since the text is composed of class names placed into
pre-defined templates, the text embedding represents the se-
mantic information of the corresponding class. Therefore,
those points with the same semantics will be restricted near
the same text embedding, and those with different semantics
will be pushed away. To this end, our Semantic Consistency
Regularization causes less conflict in contrastive learning.

3.2.2 Semantic-guided Spatial-temporal Consistency
Regularization

Besides semantic consistency regularization, we consider
how image pixel features help to regularize a 3D network.
The natural alternative directly pulls in the point feature
with its corresponding pixel in the embedding space. How-
ever, after trial and error, we observe that the network easily
degenerates and achieves poor performance in the down-
stream tasks when following the aforementioned strategy.
The main reason lies in the noise-assigned semantics of the
image pixel and the imperfect pixel-point mapping caused
by the calibration errors. To this end, we propose a novel
semantic-guided Spatial-Temporal Consistency Regulariza-
tion to alleviate the problem by imposing a soft constraint
on points within local space and time.

Specifically, given an image I and temporally coherent
LiDAR point cloud {P;}X |, where K is the number of
sweeps within S seconds. Note that the image is matched
to the first frame of the point cloud P; with pixel-point pairs

{21, p1 M. We register the rest of the point cloud to the
first frame v1a the calibration matrices and map them to the
image (Fig. 4). Thus we obtain all pixel-point-text pairs

Al kMK
in a short temporal {2%, p¥, tF}.;2} =1

the entire stitched point cloud into regular grids {g,}Y_;,
where the temporally coherent points are located in the
same grid. We impose the spatial-temporal consistency con-
straint within individual grids by the following objective
function:

Next, we divide

Lssp=y, > (1—sigmoid(D(}. f.)/N, @

gn (i,k)Egn

where (i, k) € g, indicates the pixel-point pair {i¥, p¥}
is located in the n-th grid. {f,,}2_; is a semantic-guided
cross-modal fusion feature formulated by:

S ab sk ok gk, (3)
(%jﬁ)eyn

where a? and bY are attention weight calculated by:
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where A is the temperature term.

Actually, those pixel and point features within the local
grid g,, are restricted near a dynamic centre f,,. Thus, such a
soft constraint alleviates the noisy prediction and calibration
error issues. At the same time, it imposes Spatio-Temporal
Regularization on the temporally coherent point features.

3.2.3 Switchable Self-training Strategy

We combine the loss function Lg jf, and Lssr to end-
to-end train the whole network, where the CLIP’s image
and text encoder backbone are frozen during training. We
find that method worked only when the pixel-point feature
{2, pi} M, and {2F, pF}M0K | which are used in L in o
and Lggpr, are generated from different learnable linear
layer. On top of that, we further put forward an effective
strategy to promote performance. Specifically, after con-
trastive learning of the 3D network for a few epochs, we
randomly switch the point labels between the paired im-
age pixel’s labels and their own predictions for self-training.
Merely training the 3D network with their own predictions
yields satisfactory performance. Essentially, such a Switch-
able Self-Training Strategy (S3) increases the number of



Table 1. Ablation study experiments on the nuScenes validation
dataset for annotation-free semantic segmentation.

Ablation target Settings mloU(%)
- baseline 15.1
nuScenes 15.1
Prompts semanticKITTI 13.9
Cityscapes 11.3
Regularization wlo SCR 138

KL 0

Training Strategies wlo 53 18.8
ST 10.1
1 sweep 18.7
Sweeps 3 sweeps 20.8
5 sweeps 20.6
merged 18.6
- CLIP2Scene 20.8

positive and negative samples by switching the point pseudo
labels, which benefits cross-modal knowledge distillation.

4. Experiments

Datasets. We conduct experiments on two large-scale
outdoor LiDAR segmentation benchmarks, i.e., Se-
manticKITTI [3] and nuScenes [5, 22]. The nuScenes
dataset contains 700 scenes for training, 150 scenes for
validation and 150 scenes for testing, where 16 classes
are utilized for LiDAR semantic segmentation. As to Se-
manticKITTIL, it contains 19 classes for training and evalu-
ation. It has 22 sequences, where sequences 00 to 10, 08
and 11 to 21 are used for training, validation and testing,
respectively.

Implementation Details. We use the nuScenes [5, 22]
dataset to pre-train the network. Following SLidR, we
pre-train the network on all key frames from 600 scenes.
Besides, we fine-tune the pre-trained network on Se-
manticKITTT [3] to verify the generalization ability. We
leverage CLIP’s image encoder and text encoder to gener-
ate image features and text embedding, respectively. Fol-
lowing MaskCLIP, we modify the attention pooling layer of
the CLIP’s image encoder, thus extracting the dense pixel-
text correspondences. We take SPVCNN [41] as the 3D
network to produce the point-wise feature. The whole net-
work is trained on the PyTorch platform. The training time
is about 40 hours for 20 epochs on two NVIDIA Tesla A100
GPUs. For the switchable self-training strategy, we ran-
domly switch the point supervision signal after 10 epochs.
The optimizer is SGD with a cosine scheduler. We set the
temperature A and 7 to be 1 and 0.5, respectively. The
sweep number is set to be 3 empirically. We apply sev-
eral data augmentations in contrastive learning, including
random rotation around the z-axis and random flip on the

Table 2. Comparison of different self-supervised methods for se-
mantic segmentation on the nuScenes and SemanticKITTI valida-
tion datasets.

Initialization nuScenes semanticKITTI
1% 100% 1%
Random 422 69.1 32.5
PPKT [34] 48.0 70.1 39.1
SLidR [40] 482 704 39.6
CLIP2Scene 56.3 715 42.6

point cloud, random horizontal flip and random crop-resize
on the image.

4.1. Annotation-free Semantic Segmentation

After pre-training the network, we show the performance
of the 3D network when it is not fine-tuned on any annota-
tions. As no previous method reports the 3D annotation-free
segmentation performance, we compare our method with
different setups (Table 1). In what follows, we describe the
experimental settings and give insights into our method and
the different settings.

Settings. We conduct experiments on the nuScenes dataset
to evaluate the annotation-free semantic segmentation per-
formance. Following MaskCLIP [49], we place the class
name into 85 hand-craft prompts and feed it into the CLIP’s
text encoder to produce multiple text features. We then av-
erage the text features and feed the averaged features to the
classifier for point-wise prediction. Besides, to explore how
to effectively transfer CLIP’s knowledge to the 3D network
for annotation-free segmentation, We conduct the following
experiments to highlight the effectiveness of different mod-
ules in our framework.

Baseline. The input of the 3D network is only one sweep,
and we pre-train the framework via semantic consistency
regularization.

Prompts (nuScenes, semanticKITTI, Cityscapes). Based
on the baseline, we respectively replace the nuScenes, se-
manticKITTI, and Cityscapes class names into the prompts
to produce the text embedding.

Regularization (w/o STR, KL). Based on the full method,
we remove the Spatial-temporal Consistency Regulariza-
tion (w/o SCR). Besides, we abuse both SR and SCR
and distill the image feature to the point cloud by Kull-
back-Leibler (KL) divergence loss.

Training Strategies (w/o S3, ST). We abuse the Switchable
Self-Training Strategy (w/o S3) in the full method. Besides,
we show the performance of only training the 3D network
by their own predictions after ten epochs (ST).

Sweeps Number (1 sweep, 3 sweeps, 5 sweeps, and
merged). We set the sweep number K to be 1, 3, and 5, re-
spectively. Besides, we also take three sweeps of the point
cloud as the input to pre-train the network.

Effect of Different Prompts. To verify how text em-
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Figure 5. Qualitative results of annotation-free semantic segmentation on nuScenes dataset. Note that we show the results by individual
class. From the left to the right column are the bus, motorcycle, car and truck, respectively. The first row is the ground truth; The second
row (ours*) is our prediction of the highlighted target; the third row is our prediction of full classes (ours).

bedding affects the performance, we generate various text
embeddings by the class name from different datasets
(nuScenes, SemanticKITT, and Cityscapes) for pre-training
the framework. As shown in Table 1, we find that
even learning with other datasets’ text embedding (se-
manticKITT and Cityscapes), the 3D network could still
recognize the nuScenes’s objects with decent performance
(13.9 and 11.3 mloU, respectively). The result shows that
the 3D network is capable of open-vocabulary recognition.

Effect of Semantic and Spatial-temporal Consistency
Regularization. We remove Spatial-temporal Consistency
Regularization (w/o SCR) from our method. Experiments
show that the performance is dramatically decreased, indi-
cating the effectiveness of our design. Besides, we also dis-
till the image feature to the point cloud by KL divergence
loss, where the text embeddings calculate the logits. How-
ever, such a method fails to transfer the semantic informa-
tion from the image. The main reason is the noise-assigned
semantics of the image pixel and the imperfect pixel-point
correspondence due to the calibration error.

Effect of Switchable Self-training Strategy. To examine
the effect of the Switchable Self-Training Strategy, we ei-
ther train the network with image supervision (w/o S3) or
train the 3D network by their own predictions. Both tri-
als witness the performance drop, indicating our Switch-
able Self-Training Strategy is efficient in cross-modal self-
supervised learning. The main reason is that the number of
positive and negative samples is enlarged by switching the
supervision signal.

Effect of Sweep Numbers. Intuitively, the performance of
our method benefits from more sweeps information. There-
fore, we also show the performance when restricting sweep
size to 1, 3, and 5, respectively. However, we observe that
the performance of 5 sweeps is similar to 3 sweeps but is
more computationally expensive. Thus, we empirically set
the sweep number to be 3.

Qualitative Evaluation. We show the qualitative evalua-
tion in Fig. 5. Note that we show the results by individ-
ual class (construction vehicle, truck, and car). The results
show that our method is able to perceive the objects without
any annotation training data. However, we also observe the
false positive predictions around the ground truth objects.
We will resolve this issue in future work.

4.2. Annotation-efficient Semantic Segmentation

Besides annotation-free semantic segmentation, the pre-
trained 3D network also boosts the performance when it
is fine-tuned on labelled data. To the best of our knowl-
edge, only one published method SLidR studies image-to-
Lidar self-supervised representation distillation. We also
compared our method with another self-supervised method
PPKT [34] for 3D network pre-training. In the follow-
ings, we first introduce SLidR [40] and PPKT, then compare
them in detail.

PPKT. PPKT is a cross-modal self-supervised method for
the RGB-D dataset. It performs 2D-to-3D knowledge dis-
tillation via pixel-to-point contrastive loss. Since there is
no public code, we re-implement it for a fair comparison.
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Figure 6 Quahtatlve results of ﬁne tumng on 1% nuScenes dataset From the first row to the last row are the input lear scan, ground truth,
prediction of SLidR, and our prediction, respectively. Note that we show the results by error map, where the red point indicates the wrong

prediction. Apparently, our method achieves decent performance.

Specifically, we use the same 3D network and training pro-
tocol but replace our semantic and Spatio-Temporal Reg-
ularization with InfoNCE loss. The framework is trained
on 4, 096 randomly selected image-to-point pairs for 50
epochs.

SLidR. SLidR is an image-to-Lidar self-supervised method
for autonomous driving data. Compared with PPKT,
it introduces image super-pixel into cross-modal self-
supervised learning. For a fair comparison, we replace our
loss function with their superpixel-driven contrastive loss.
Performance. As shown in Table 2, our method signifi-
cantly outperforms the state-of-the-art methods when fine-
tuned on 1% and 100% data, with the improvement of
8.1% and 1.1%, respectively. Compared with the ran-
dom initialization, the improvement is 14.1% and 2.4%, re-
spectively, indicating the efficiency of our semantic-driven
cross-modal contrastive learning framework. The qualita-
tive results are shown in Fig. 6. Besides, we also verify the
cross-domain generalization ability of our method. When
pre-training the 3D network on the nuScenes dataset and
fine-tuning on 1% SemanticKITTI dataset, our method sig-
nificantly outperforms other state-of-the-art self-supervised
methods.

Discussions. PPKT and SLidR reveal that contrastive loss
is promising for transferring knowledge from image to point
cloud. Like self-supervised learning, constructing the pos-
itive and negative samples is vital to unsupervised cross-
modal knowledge distillation. However, previous meth-
ods suffer from the optimization-conflict issue, i.e., some

of the negative paired samples are actually positive pairs.
For example, the road occupies a large proportion of the
point cloud in a scene and is supposed to have the same
semantics in the semantic segmentation task. When ran-
domly selecting training samples, most negatively defined
road-road points are actually positive. When feedforward-
ing such training samples into contrastive learning, the con-
trastive loss will push them away in the embedding space,
leading to unsatisfactory representation learning and ham-
mering the downstream tasks’ performance. SLidR in-
troduces superpixel-driven contrastive learning to alleviate
such issues. The motivation is that the visual representation
of the image pixel and the projected points are consistent
intra-superpixel. Although avoiding selecting the negative
image-point pairs from the same superpixel, the conflict is-
sue still exists inter-superpixel. In our CLIP2Scene, we in-
troduce the free-available dense pixel-text correspondence
to alleviate the optimization conflicts. The text embedding
represents the semantic information and can be used to se-
lect more reasonable training samples for contrastive learn-
ing.

Besides training sample selection, the previous method
also ignores the temporal coherence of the multi-sweep
point cloud. Similar to multi-view consistency, multi-sweep
consistency emphasizes inter-sweep consistency along time
series. That is, for those LiDAR points mapping to the same
image pixel, their feature should be the same. Besides, con-
sidering the sparsity of the LiDAR scan and the calibration
error between the LiDAR scan and the camera image. We



relax the pixel-to-point mapping to image grid-to-point grid
mapping and calculate the dynamic centre within the indi-
vidual grid for consistency regularization. To this end, our
Spatial-temporal consistency regularization leads to a more
comprehensive point representation.

Last but not least, the previous method typically enlarges
the number of training samples by data augmentation. In
our CLIP2Scene, we find that randomly switching the su-
pervision signal benefits self-supervised learning. Essen-
tially, our Switchable Self-Training Strategy enlarges the
training samples and prevents the network from deteriorat-
ing.

5. Conclusion

We explored how CLIP knowledge benefits 3D scene

understanding in this paper, termed CLIP2Scene. To ef-
ficiently transfer CLIP’s image feature and text feature
to a 3D network, we propose a novel Semantic-driven
Cross-modal Contrastive Learning framework including Se-
mantic Regularization and Spatial-Temporal Regulariza-
tion. For the first time, our pre-trained 3D network achieves
annotation-free 3D semantic segmentation with decent per-
formance. Besides, our method significantly outperforms
state-of-the-art self-supervised methods when fine-tuning
the 3D network with labelled data.
Potential Negative Impacts. Although our approach im-
proves the 3D semantic segmentation performance in gen-
eral, its effectiveness under adversarial attack is not con-
sidered, which could be safety-critical in practical applica-
tions, such as autonomous driving and robot navigation.
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