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Abstract— Due to the complex and changing interactions in
dynamic scenarios, motion forecasting is a challenging problem
in autonomous driving. Most existing works exploit static road
graphs to characterize scenarios and are limited in modeling
evolving spatio-temporal dependencies in dynamic scenarios. In
this paper, we resort to dynamic heterogeneous graphs to model
the scenario. Various scenario components including vehicles
(agents) and lanes, multi-type interactions, and their changes
over time are jointly encoded. Furthermore, we design a novel
heterogeneous graph convolutional recurrent network, aggre-
gating diverse interaction information and capturing their evo-
lution, to learn to exploit intrinsic spatio-temporal dependencies
in dynamic graphs and obtain effective representations of
dynamic scenarios. Finally, with a motion forecasting decoder,
our model predicts realistic and multi-modal future trajectories
of agents and outperforms state-of-the-art published works on
several motion forecasting benchmarks.

I. INTRODUCTION

Motion forecasting that predicts future trajectories of
surrounding agents is an important and core module in
autonomous driving systems for a safe and comfortable self-
driving. Prediction is inherently uncertain and multi-modal.
For example, a car may follow a vehicle ahead or change
lanes on a congested road. Fortunately, historical trajectories
of agents and high definition (HD) maps provide cues to
perceive context information and render predictions feasible.

Exploitation of such information is nontrivial, however,
because of (i) highly heterogeneous scenario components
[1], including surrounding agents, lanes, traffic lights, etc.;
(ii) complex and multiple interactions, like agent-agent in-
teraction and agent-road interaction; (iii) interlaced spatio-
temporal information, such as the trajectories of agents.

Several methods [2]–[6] rasterize the scenario to en-
code road information and historical trajectories of agents
and exploit convolutional neural networks (CNNs) to learn
complex interactions in the scenario. However, the sparse
and irregular topology of road networks is inefficient to
capture with rasterization-based representations and long-
range interactions are difficult to process with local kernels
of CNNs. Alternatively, a variety of graph-based methods
[7]–[11] have been proposed recently. They typically employ
graphs to represent irregular road networks and design var-
ious graph convolutional networks (GCNs) to further learn
representations, such as VectorNet [7], LaneGCN [8], and
LaneRCNN [9].
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Fig. 1. A high-level demonstration of differences in dynamic scenario
modeling and spatio-temporal information processing between existing
methods and the proposed strategy.

However, these methods still have limitations in the fol-
lowing two aspects, as illustrated in Fig. 1. (i) Dynamic sce-
nario modeling. Existing graph-based methods employ static
graphs to model either road networks [8]–[10] or agent-agent
interaction networks [11], instead of the whole scenario.
These static homogeneous graphs fail to characterize the
evolution in dynamic scenarios and the diversity of scenario
components and their interactions. (ii) Joint spatio-temporal
information processing. With static graph representation,
existing methods typically process temporal decencies and
spatial interactions separately and combine them with late-
fusion strategies. This will hinder the model from capturing
the intrinsic correlation of spatio-temporal information.

To tackle these problems, we propose a novel dynamic
scenario representation learning method for motion forecast-
ing, called HeteroGCN, as illustrated in Fig. 2. HeteroGCN
first models dynamic scenarios with the help of dynamic
heterogeneous graphs. A heterogeneous graph convolutional
recurrent network is further designed, which consists of
heterogeneous graph convolution operators and motion en-
coding modules, for joint spatio-temporal information pro-
cessing. The benefits of HeteroGCN are summarized as
below.

• The proposed scenario modeling strategy explicitly en-
codes dynamic attributes of agents and multiple time-
varying interactions in the scenario into the signal and
topology of dynamic graphs, through mining from his-
torical trajectories of agents, and inherits the advantages
of static graph based road network encoding methods
in capturing its sparse and irregular structure.

• The proposed graph convolutional recurrent net-

ar
X

iv
:2

30
3.

04
36

4v
1 

 [
cs

.A
I]

  8
 M

ar
 2

02
3



works gradually aggregate spatio-temporal information
through processing the evolution of the topology and
signal of dynamic graphs, which facilities to explore
intrinsic spatio-temporal dependencies.

• The designed heterogeneous graph convolution operator
handles multiple types of nodes and interactions jointly
yet differently, which permits to fuse road information
and agent features at different time slots directly.

Based on the scenario representation, we predict future
trajectories of agents with a motion forecasting decoder.
It is shown to outperform state-of-the-art published motion
forecasting methods on the challenging large-scale Argoverse
and Argoverse2 motion forecasting benchmarks.

II. RELATED WORKS

We overview a collection of motion forecasting methods,
especially focusing on vectorized (sparse) encoding based
scenario representations.

Some early methods [12], [13] exploit LSTMs or GRUs
to encode temporal information of agents but ignore spatial
interactions between agents and roads. In addition to LSTMs,
multi-head attention is exploited in Jean [14] to handle
interactions between agents, but road map information is still
missing. Recently, TPCN [15] and DCMS [16] introduce
techniques from point cloud processing to learn scenario
representation. They employ a spatial module to extract
features of waypoints as well as map information and a
temporal module to capture sequential information of agents.
Besides, several transformer based models [17]–[19] utilize a
stack of self-attention and cross-attention modules to capture
complex interactions across agents, road lines, and temporal
states, in a decoupled way. Multipath++ [1] designs a multi-
context gating, an efficient variant of cross-attention, to
fuse various interactions and further employs ensemble to
improve the multimodality of predictions.

Alternatively, graph neural networks (GNNs) have recently
attended much attention in the field of motion forecasting
with graph data capturing the sparse and irregular topol-
ogy of road networks efficiently. For example, Vectornet
[7] proposes a two-level graph neural network to produce
vectorized representation of scenario components. A local
graph network extracts features of each component, includ-
ing trajectories of agents and road polygons, and global
interactions between these objects are further processed with
another graph convolution layer. Based on the representation
from Vectornet, TNT [20] designs a goal-based prediction
decoder, and DensenTNT [21] further improves the goal
prediction module with a dense goal candidate set. However,
the topology of road networks is not effectively exploited in
Vectornet with a fully-connected global graph. To address
it, LaneGCN [8] models road networks with lane graphs
and designs a graph convolutional network to capture the
complex topology of lane graphs. Similarly, Gohome [10]
and THOMAS [22] encode the structure of road networks
with the help of lanelet-level graphs and output a heatmap
to predict positions of agents. Furthermore, LaneRCNN [9]
proposes an agent-specific subgraph to combine historical

motions of agents and their respective local contexts, and
handles interactions through pooling in the global lane graph.
In addition to lane graphs, HEAT [11] employs heteroge-
neous graphs to model various agent-agent interactions.

In contrast with these methods, we propose a dynamic
heterogeneous graph to represent dynamic scenarios includ-
ing agents and road networks, instead of a static lane-
graph for road networks [8]–[10]. Furthermore, we design a
novel heterogeneous graph convolutional recurrent network
to address the heterogeneity in nodes and edges of a graph
and capture its time-varying topology and signal.

III. NOTIONS AND PRELIMINARIES

Notions. In this paper, we represent a discrete-time dy-
namic graph and its discrete snapshots with G and Gp =
{Vp, Ep}Pp=1, and use the subscript p to indicate terms
belonging to the p-th snapshot Gp. Specifically, Vp indicates
vertex set and Ep is edge set. The topology of Gp is
represented by adjacency matrix Ap, and signals or features
on nodes in the graph are denoted as Xp, with xp,i = xp(vi)
corresponding to features of node vi ∈ Vp and Xp =

[xp,1,xp,2, . . . ,xp,n]
T , n = |Vp|. If the graph is further

heterogeneous, we use superscripts to distinguish different
types. For example, the set of vertices is Vp =

⋃
z Vzp and

the set of edges is Ep =
⋃
r Erp , with Vzp and Erp indicating

different types of node sets and edge sets. Xz
p as a sub-matrix

of Xp indicates features of nodes vzii ∈ Vzp . Besides, matrices
and vectors are generally represented by capital letters and
bold lowercase letters.

A. Graph Convolution

Convolution has been generalized from Euclidean data
to graph data to enable deep neural networks to capture
the irregular topology of graphs recently. Generally, the
definition of graph convolution derives from either spectral
graph theory or message passing strategies, corresponding to
spectral graph convolutional networks [23]–[26] and spatial
graph convolutional networks [27]–[30]. Spatial graph con-
volutional networks are much prevalent with their flexible
and diverse designs of message passing and aggregation
schemes. They generally consist of two stages, message
passing in neighborhoods and node feature update. For each
node vi ∈ V , features on its neighbors vj ∈ N(vi) are
first processed with a aggregator function � to generate a
message msg(vi), node vi then updates its features based
on the message from its neighbors and its previous layer
representation xl(vi).

msg(vi) = �
vj∈N(vi)

ϕ
(
xl(vj), xl(vi)

)
(1)

xl+1(vi) = ξ
(
xl(vi),msg(vi)

)
, (2)

where xl(vi) indicates the feature of node vi in the l-th layer
of graph neural networks, ϕ(·) and ξ(·) represent message
functions and update functions, respectively.
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Fig. 2. Illustration of the framework. The dynamic graph for scenario modeling is demonstrated with a randomly selected agent (yellow triangle) in (a).
Specifically, agent nodes and lane nodes are respectively represented as triangles and circles, and various interactions between them are indicated by edges
in different colors. Based on the dynamic graph, the proposed heterogeneous graph convolutional recurrent network further captures high-order information
of scenarios and forecasts future trajectories of agents, as shown in (b) and (c). Specially, message passing strategies for dynamic graphs in HeteroGCN
are demonstrated in (d), with various colored dashed lines indicating message propagation along different types of edges.

IV. DYNAMIC GRAPHS FOR SCENE MODELING

We exploit dynamic graphs to explicitly model driving
scenarios and their evolution over time. Specially, all of the
scenario components, including agents and roads, and their
multi-type interactions are jointly encoded in the topology
of graphs.

Given a sequence of historical scenes, we first group them
every τ discrete time, and construct a snapshot for each group
instead of per discrete time to reduce computation. In other
words, the p-th snapshot Gp is built with information at time
t = τ ∗ (p− 1)−T ′+1, τ ∗ (p− 1)−T ′+2, . . . , τ ∗ p−T ′,
with T ′ = τ ∗P and p = 1, 2, . . . , P . Due to the diversity of
scenario components and their interactions, each snapshot is
constructed as a heterogeneous graph.

Specifically, we consider two kinds of nodes i.e., agents
and lane segments, and four kinds of edges, including <
agent, agent >, < agent, lane >, < lane, agent >, and
< lane, lane >, in graphs. Without loss of generality, we
assume that the set of vertices Vp keeps the same in different
Gp, except their attributes vary with p. For the sake of
clarity, we omit the subscript p of nodes below, when without
causing confusion.

Nodes. We take each agent in the scenario as an agent node
v0i ∈ V0, and each lane segment as a lane node v1i ∈ V1.
Agent node features are designed as their states and state
displacements. Specifically, for the p-th group of historical
scenes, there are τ discrete locations and displacements per
agent node v0i ∈ Vp, at time t = τ ∗ (p − 1) − T ′ + 1, τ ∗
(p − 1) − T ′ + 2, . . . , τ ∗ p − T ′, and we adopt its state at
t = τ ∗ p − T ′, i.e., sτ∗p−T ′(v0i ), and all the displacements

between these τ adjacent states as agent node features x0
p,i =

xp(v
0
i ) in Gp, p = 1, 2, . . . , P . Similarly, the features of

lane nodes are initially adopted from their locations and
location displacements, and the features are further processed
with a two-layer graph convolutional network, a variant of
GraphSage [29], to encode map topologies.

Lane-lane edges (E0) are linked following the topology of
road networks. Specifically, if lane segment v1i and segment
v1j are directly connected in sequence according to the road
direction, a directed edge e0i,j =< v1i , v

1
j > ∈ E0 is

constructed to connect v1i to v1j . Since road topology is static,
E0 is the same in different Gp and the subscript p is omitted.

Lane-agent edges (E1) are built on lane-lane edges E0.
Specially, we encode the speed, heading, and location
of agents at corresponding time into the topology of Gp.
Specifically, for historical scenes at time t = τ ∗ (p − 1) −
T ′ + 1, τ ∗ (p − 1) − T ′ + 2, . . . , τ ∗ p − T ′, we first find
the k nearest lane nodes for each agent node v0i based on its
coordinate cp,i = ct(v

0
i ), t = τ ∗ p − T ′, and discard some

of them belonging to opposing lanes.1 Then, starting from
these nodes, we perform a depth-first-search (DFS) along
edges in E0, exploring as far as possible until all nodes
reachable from the source node within the maximum depth
have been found. The maximum depth of DFS is based on
the average speed of the agent, the average gap between
adjacent lane nodes, and the time to forecast. Finally, we
link the agent node v0i to the explored lane nodes {v1j }j
with edges E1p = {e1i,j =< v0i , v

1
j >}. Meanwhile, we obtain

1On intersections, we keep all k nodes, considering that agents may make
a U-turn.



agent-lane edges E2p = {e2j,i =< v1j , v
0
i > |∀e1i,j ∈ E1p}.

Agent-agent edges are constructed in accordance with the
distance between their locations. Specifically, the distance
between v0i and v0j is computed with the `1 norm to approx-
imate the distance of agents along roads.

dp(v
0
i , v

0
j ) = ‖cp(v0i )− cp(v0j )‖1, p = 1, 2, . . . , P. (3)

Then, they are connected with direct edges e3i,j , e
3
j,i ∈ E3p

in Gp, if dp(v0i , v
0
j ) < δaa, with δaa as a hyperparameter

denoting the distance threshold.

V. HETEROGENEOUS GRAPH CONVOLUTIONAL
RECURRENT NETWORKS

We first outline the framework of the proposed graph
neural networks, then elaborate its components and introduce
the learning procedure.

A. Framework

As presented in Fig. 2, the whole framework consists of
an encoder to learn vectorized representations of dynamic
scenarios and their components and a decoder to produce
future trajectories of agents.

The encoder is designed as a heterogeneous graph con-
volutional recurrent network. It takes in dynamic scenarios
that are modeled as dynamic graphs and aggregates spatio-
temporal information of dynamic graphs with a graph con-
volution module (GCM) and a motion encoding module. For
each snapshot Gp, p = 1, 2, . . . , P , the motion encoding
module as a causal module produces motion features M0

p

for each agent node from its historical trajectory. The motion
features M0

p together with spatial features H0
p−1 from Gp−1

are then processed with a spatio-temporal gate g(·) to update
the features of agent nodes at the beginning of the graph
convolution module,

H0
p−1 ← g(H0

p−1,M
0
p ), p = 1, 2, . . . , P, (4)

with H0
0 initialized as a zero matrix. As an example, g(·)

is implemented as summation in this paper. A stack of
heterogeneous graph convolution operators in the GCM
further aggregate information to processes complex high-
order interactions in snapshots Gp.

Hp = GCM(Hp−1, Ap), p = 1, 2, . . . , P, (5)

with features of lane nodes initialized as map features H1
0 =

X1
1 . Notably, the encoder is a recurrent network and the

GCM is shared across different snapshots {Gp}Pp=1 of G.
Based on encoded representation HP from the encoder,

the decoder composed of three branches further predicts
K goals {ŝkT }, future trajectories Ŝkf = [ŝ1, ŝ2, ..., ŝT−1],
k = 1, 2, . . . ,K, and their corresponding confidence scores,
respectively.

B. Motion Encoding Module
The motion encoding module aims to extract mo-

tion features of agents from their raw trajectory features
{X0

1 , X
0
2 , . . . , X

0
p}. Specifically, two 2-layer multilayer per-

ceptrons (MLPs) first map the raw agent features X0
p , posi-

tions and displacements, in each snapshot Gp into feature
spaces and produce corresponding embeddings. Notably,
these MLPs are common to different snapshots. Taking in
these two embedding sequences, two 1-layer GRUs further
process information across snapshots, respectively. Finally,
a linear layer fuses the features corresponding to positions
and displacements from respective GRUs to obtain motion
features M0

p , p = 1, 2, . . . , P .

C. Heterogeneous Graph Convolution Operator
To represent various nodes and capture their multiple

relationships, we design a heterogeneous graph convolution
operator through message passing. For the sake of clarity,
we ignore the subscript p of items in this subsection.

Generally, we adopt different message passing schemes
along distinct types of edges in G. For any node vzii ,
messages msgr to vzii are first aggregated within each of
its distinct neighborhoods {Nr(vzii )}r, r = 0, 1, . . . , 3,
and these messages are further combined and processed to
produce its context representation msg(vzii ) ∈ Rd, with d
indicating the number of node hidden features.

msg(vzii ) = ReLU
(∑

r

max
vj∈Nr

msgr(v
zj
j → vzii )

)
,

zi, zj ∈ {0, 1} and r = 0, 1, . . . , 3.

(6)

Along each type of edges, the message from v
zj
j to

vzii is defined as a function of node feature hj ∈ Rd
(H = [h1, . . . ,hj , . . . ,hn]

T ∈ Rn×d) and its relationship
r(vzii , v

zj
j ) ∈ Rd with the target node

msgr(v
zj
j → vzii ) = f(hj , r(v

zi
i , v

zj
j )). (7)

The f(·) : R2d → Rd is designed as an MLP in order to
approximate a suitable function by learning from data. The
relationship r(vzii , v

zj
j ) between nodes is computed based on

their feature similarity and coordinate displacement

r(vzii , v
zj
j ) = ψ((Qzhi)� hj , ci − cj), (8)

where ψ(·) represents a learnable non-linear transformation,
Qz is a learnable affine matrix, ci = c(vzii ) denotes node
coordinates, and � indicates the Hadamard product.

Based on the context message msg(vzii ) and a self-
transformation νz(·), the convolution operator outputs node
features

hp,i = ReLU
(
Wzi · [νzi(hp−1,i) ‖ msg(vzii )]

)
,

zi = 0, 1 and p = 1, 2, . . . , P,
(9)

where Wzi ∈ Rd×2d represents a learnable parameter matrix.
Specially, a shortcut is further introduced to facilitate infor-
mation and gradient propagation, and then Eq. (9) becomes

hp,i = ReLU
(
Wzi · [νzi(hp−1,i) ‖ msg(vzii )] + hp−1,i

)
.

(10)



TABLE I
RESULTS ON THE TESTING SET OF ARGOVERSE MOTION FORECASTING BENCHMARK (* INDICATING RESULTS WITH ENSEMBLE).

Method K = 1 K = 6
minADE minFDE MR minADE minFDE MR B-minFDE

LaneRCNN 1.69 3.69 0.57 0.90 1.45 0.12 2.15
Jean 1.74 4.24 0.69 1.00 1.42 0.13 2.12
Prime 1.91 3.82 0.59 1.22 1.56 0.12 2.10
LaneGCN 1.71 3.78 0.59 0.87 1.36 0.16 2.05
Gohome 1.69 3.65 0.57 0.94 1.45 0.10 1.98
DenseTNT(minFDE) 1.68 3.63 0.58 0.88 1.28 0.13 1.98
THOMAS 1.67 3.59 0.56 0.94 1.44 0.10 1.97
SceneTransformer 1.81 4.06 0.59 0.80 1.23 0.13 1.89
Home+Gohome* 1.70 3.68 0.57 0.89 1.29 0.09 1.86
Multipath++* 1.62 3.61 0.56 0.79 1.21 0.13 1.79
HeteroGCN 1.62 3.52 0.55 0.82 1.19 0.12 1.84
HeteroGCN-en* 1.57 3.41 0.54 0.79 1.16 0.12 1.75

TABLE II
RESULTS ON THE TESTING SET OF ARGOVERSE2 MOTION FORECASTING BENCHMARK (* INDICATING RESULTS WITH ENSEMBLE).

Method K = 1 K = 6
minADE minFDE MR minADE minFDE MR B-minFDE

WIMP 3.09 7.71 0.84 1.47 2.90 0.42 -
Drivingfree 2.47 6.26 0.72 1.17 2.58 0.49 3.03
LGU 2.77 6.91 0.73 1.05 2.15 0.37 2.77
THOMAS 1.95 4.71 0.64 0.88 1.51 0.20 2.16
QML* 1.84 4.98 0.62 0.69 1.39 0.19 1.95
BANet* 1.79 4.61 0.60 0.71 1.36 0.19 1.92

HeteroGCN 1.79 4.53 0.59 0.73 1.37 0.18 2.00
HeteroGCN-en* 1.72 4.40 0.59 0.69 1.34 0.18 1.90

D. Motion Prediction Decoder

We adopt a goal-based decoder. It consists of three
branches to predict K future states and their respective
scores. All of these branches are designed as MLPs.

The goal branch takes in the representation of agents
output by GCMs H0

P and predicts K goals {ŝkT }Kk=1.
Then, regression branch completes the trajectories Ŝkf =[
ŝk1 , ŝ

k
2 , ..., ŝ

k
T−1

]
conditioned on the embedding of pre-

dicted goal ŝkT and agent features H0
P , k = 1, 2, . . . ,K.

Finally, scoring branch estimates the confidence {q̂k}Kk=1 of
each prediction.

E. Learning

The loss function of the whole model consist of three parts,
corresponding to goal prediction, trajectory completion, and
score estimation, respectively.

L = λ1Lgoal + λ2Lreg + λ3Lscore, (11)

with λ1, λ2, λ3 as hyperparameters to balance the loss.
Similar to previous methods [8], [9], we choose the smooth
`1 loss l(·) for Lgoal and Lreg , and the max-margin loss
for Lscore. To obtain diverse predictions, Lgoal and Lreg are
computed based on the prediction achieving the minimum
goal displacement error

Lgoal =
1

|V0|
∑
v0i∈V0

min
k
l(ŝkT , sT ) (12)

Lreg =
1

|V0|(T − 1)

∑
v0i∈V0

T−1∑
t=1

l(ŝk
∗

t , st), (13)

where {st}Tt=1 represent ground truth future states of agents
and k∗ indicates the index of the prediction achieving the
minimum loss in Eq. (12). The max-margin loss drives the
model to assign the highest confidence score to the optimal
prediction Ŝk

∗

f . Mathematically, with ε indicating the margin,

Lscore =
1

|V0|(K − 1)

∑
v0i∈V0

∑
k 6=k∗

max(q̂k − q̂k
∗
+ ε, 0).

(14)

VI. EXPERIMENTAL RESULTS

We evaluate our model on the public Argoverse and Argo-
verse2 Motion Forecasting benchmarks, where the proposed
model achieves significant improvements over a collection of
state-of-the-art published methods. Furthermore, several ab-
lation studies are conducted to verify the proposed modules.

A. Experimental Settings

Datesets. Argoverse [31] consists of 324,557 scenarios
which are split into training, validation, and testing sets with
the ratio 205, 942 : 39, 472 : 78, 143. The scenarios are
generally selected from challenging cases, including inter-
actions, turns, lane changes, and dense traffic. Each scenario
contains the locations of objects in 5 seconds sampled at
10 HZ, where initial 2 seconds (20 frames, −T19, . . . , T0)
are adopted as observations to forecast the trajectory in the
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Fig. 3. Illustration of prediction results on the validation set of Argoverse. For clarity, trajectories of surrounding vehicles are not presented and self-
ensemble is illustrated with five models.
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Fig. 4. Illustration of prediction results on the validation set of Argoverse2.

next 3 seconds (30 frames, T1, . . . , T30). A case typically
consists of multiple moving agents, including an autonomous
vehicle (AV) and other cars, and a single “interesting” agent
is selected to predict per sequence. Locations of agents are
provided as their states {st} and HD maps are also rendered.

Besides, Argoverse2 [32] provides more challenging data
with a longer forecast horizon, predicting 6 seconds based on
5 second observations, than Argoverse. It contains 250,000
scenarios with a split ratio of 8:1:1 for training, validation,
and testing sets. Furthermore, compared with Argoverse,
Argoverse2 contains 5 rather than 1 object types, including
vehicle, pedestrian, cyclist, etc., each with dynamic and static
categories. Agent states are further expanded into location,
velocity, orientation, and one-hot encoding of agent types.

Metrics. According to the setting of Argoverse and
Argoverse2 Motion Forecasting leaderboards, we predict
K trajectories for each “interesting” agent and report the
following metrics: Minimum Average Displacement Er-
ror (minADE@K), Minimum Final Displacement Error
(minFDE@K), Miss Rate (MR@K), Brier minimum Final
Displacement Error (B-minFDE@K), with K = 1 and 6.
ADE is the averaged `2-norm distance between the prediction

and the ground truth over all the time steps, and minADE@K
refers to the minimum of K predictions. Similarly, the
minFDE@K represents the minimum `2-norm distance be-
tween the prediction of final position (goal) and the ground
truth. Based on minFDE@K, MR@K is defined as the ratio
of scenarios where the minFDE@K is beyond 2 meters.
Finally, the B-minFDE@K further considers the probability
of the optimal prediction.

Configurations. We adopt a scenario-wise coordinate sys-
tem in the experiments, that is, all agents in the scenario
share the same coordinate system. We take the location of
the agent to predict at t = 0 as the origin, and adopt
its current direction as x-axis. All the data are normalized
accordingly. In graph construction, historical states Sh =[
s−T ′+1, s−T ′+2, ..., s0

]
are sliced into P groups with

interval τ = 5, i.e., P = 4 in Argoverse and P = 10 in
Argoverse2. The ψ(·) and the ν(·) in the graph convolution
operator each use a linear layer followed by a ReLU activa-
tion function. The GCM contains 2 and 3 graph convolution
operators for Argoverse and Argoverse2, respectively. Mod-
els are trained with the Adam [33] optimizer with batch size
128 for 40 and 90 epochs on Argoverse and Argoverse2.
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Fig. 5. Comparison of prediction results on the validation set of Argoverse using respective official code of baselines, with the goal of each predicted
trajectory represented by a pentagram and its size indicating the confidence. For clarity, trajectories of surrounding vehicles are not presented.

Baselines. We compare with a collection of state-of-the-
art methods in motion forecasting. First, Prime [34] exploits
a model-based generator and a learning-based evaluator to
produce feasible future trajectories. Besides, Jean [14] em-
ploys LSTMs and multi-head attention to handle trajectories
of agents and their interactions. Then, a series of GNNs
based methods are compared. LaneGCN [8] builds a lane
graph for HD maps and captures various interactions through
additional attention modules, and BANet [35] as a variant
further fuses lane boundary information. Similarly, Gohome
[10] and THOMAS [22] exploit a lanelet-level graph to
encode HD map. LaneRCNN [9] further adopts agent-
specific graphs and realizes interaction through pooling in the
global lane graph. Besides, social interactions are processed
with graph-based attention in WIMP [36]. DenseTNT [21]
relies on the scenario representation of Vectornet, a two-level
graph, and generates trajectories from dense goal candidates.
Furthermore, SceneTransformer [17] directly takes in se-
quence data and exploits transformers to handle interactions
via factorized attention. Finally, Multipath++ [1] proposes
a context gating module to handle interactions and employs
model ensemble to enhance performance.

B. Results and Analysis

As presented in Table I and Table II, the proposed
method outperforms all the baseline models in terms of B-
minFDE@6, the official ranking metric on Argoverse and
Argoverse 2. It still performs the best in accordance with
most other metrics like minFDE. As presented in Fig. 3 and
Fig. 4, the predicted trajectories of HeteroGCN are realistic
and diverse on both Argoverse and Argoverse2. HeteroGCN
adopting dynamic graphs for scenario modeling achieves sig-
nificant improvements over static road graph based methods,
like LaneGCN, LaneRCNN, GoHome, and THOMAS. Com-
pared with VectorNet and DenseTNT, the proposed model
further takes into account the heterogeneity and evolution
of nodes and edges, and effectively captures the topology
of roads. In contrast with SceneTransformer, HeteroGCN
explicitly encodes various interactions with graphs rather
than implicitly through factorized attention, which facilitates

the deep models to exploit high-order relationships between
nodes. As shown in Fig. 5, HeteroGCN produces more
accurate predictions than baselines.

Following previous methods [1], [35], we further em-
ploy a self-ensemble strategy to enhance the robustness
and accuracy of prediction. With a tiny disturbance on
the network architecture and hyper-parameters, we obtain
eight submodels of the proposed method. Then the k-means
algorithm is employed to cluster the produced states from
these models into 6 categories. The centers of the generated
clusters are adopted as final predictions and their confidence
scores are obtained by aggregating the initial scores of
trajectories within respective clusters. As presented in Table I
and Table II, the proposed HeteroGCN-en performs the best
among baselines with respective ensemble strategies, such as
Multipath++ and BANet.

C. Ablation Studies

Ablations on scenario modeling. In order to evaluate the
benefits of scenario modeling with dynamic heterogeneous
graphs, we study the following variants.
• HomoGCN ignores the heterogeneity in nodes and

edges in GCMs. It is achieved by taking a common
message passing scheme and transformation for differ-
ent z and r in Sec. V-C.

• HeteroGCN-static employs a static graph G, i.e., a
common graph topology A for all the graph convolution
layers. Motion encoding module remains to processes
all of the historical trajectories. The first GCM directly
takes in the final hidden state from motion encoding
module as agent node features (lane node features are
the same as HeteroGCN), and following GCMs feed on
the output of preceding GCMs to fuse road and agent
information. Others are the same as HeteroGCN.

• HomoGCN-static further ignores the heterogeneity in
nodes and edges in GCMs, compared with HeteroGCN-
static.

As presented in Table III, compared with the baseline
variant HomoGCN-static that models scenarios as homo-
geneous static graphs and exploits a homogeneous version



TABLE III
ABLATION STUDIES OF SCENARIO MODELING ON THE TESTING SET OF ARGOVERSE2.

Ablation variants Heterogeneous Dynamic K = 1 K = 6
minADE minFDE MR minADE minFDE MR B-minFDE

HomoGCN-static 1.90 4.87 0.61 0.77 1.46 0.20 2.10
HeteroGCN-static X 1.84 4.67 0.61 0.74 1.40 0.18 2.04

HomoGCN X 1.85 4.69 0.60 0.74 1.39 0.18 2.04
HeteroGCN(proposed) X X 1.79 4.53 0.59 0.73 1.37 0.18 2.00

TABLE IV
ABLATION STUDIES OF HETEROGENEOUS GRAPH CONVOLUTIONAL RECURRENT NETWORKS ON THE TESTING SET OF ARGOVERSE2.

Motion GCM Recurrent K = 1 K = 6
Encoding GCM-1 GCM-2 GCM-3 minADE minFDE MR minADE minFDE MR B-minFDE

X - 3.03 8.36 0.76 1.26 3.03 0.49 3.67
X X 2.02 5.05 0.63 0.80 1.50 0.20 2.14

X X X 1.88 4.79 0.61 0.75 1.43 0.19 2.07
X X X 1.84 4.68 0.60 0.74 1.39 0.19 2.03
X X 1.85 4.71 0.61 0.75 1.41 0.19 2.06
X X X 1.79 4.53 0.59 0.73 1.37 0.18 2.00

of the proposed GCNs, HeteroGCN-static and HomoGCN
achieve better performance by further considering the het-
erogeneity and the evolution of scenario components and
their interactions, respectively. Furthermore, considering the
heterogeneity and evolution jointly, the proposed HeteroGCN
performs the best.

Ablations on the main components of HeteroGCNs.
As shown in Table IV, all of the modules play a signifi-
cant role in the scenario representation learning for motion
forecasting. First, the motion encoding module that pre-
encodes motion features of agents increases the performance
from 2.14 into 2.07 in terms of B-minFDE. Furthermore,
the proposed graph convolution module (GCM) effectively
handles multi-type interactions in scenarios. Even with the
GCM just composed of one graph convolution layer, the
proposed model still outperforms all the single baselines
presented in Table II. With the increment of the number of
graph convolution layers in GCM from 1 to 3, the perfor-
mance keeps improving. Specially, designing the network as
a recurrent one, different snapshots of a dynamic graph are
processed with a common GCM, saves free-parameters and
reduces the B-minFDE from 2.06 to 2.00.

D. Computational Complexity and Running Time
The computational complexity of HeteroGCNs is domi-

nated by graph convolution with O(|E|d2), d indicating the
dimension of node features and E =

⋃
r Er. In terms of

running time, HeteroGCN is still competitive. The average
inference time of LaneGCN, DenseTNT, and HeteroGCN is
55.32, 138.59, and 57.03 milliseconds on Argoverse with
batch size 1, with their official code on a computer with an
RTX 2080 GPU, respectively.

VII. CONCLUSION

In this paper, we have presented a framework to learn
dynamic scenario representation and forecast future mo-
tions of agents in autonomous driving systems. First, the

proposed driving scenario modeling strategy with dynamic
graphs explicitly models complex interactions like agent-
road and their evolution in the scenario. Furthermore, the de-
signed heterogeneous graph convolutional recurrent network
learns to exploit multiple high-order interactions and spatio-
temporal information in the scenario jointly yet differently
and improves the motion forecasting performance on several
challenging public benchmarks. In future, it is interesting
to extend the framework from motion forecasting to motion
planning.
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