
Bringing Diversity to Autonomous Vehicles: An Interpretable
Multi-vehicle Decision-making and Planning Framework

Licheng Wen, Pinlong Cai, Daocheng Fu, Song Mao and Yikang Li
Shanghai AI Laboratory

Shanghai, China
{wenlicheng,caipinlong,fudaocheng,maosong,liyikang}@pjlab.org.cn

ABSTRACT
With the development of autonomous driving, it is becoming in-
creasingly common for autonomous vehicles (AVs) and human-
driven vehicles (HVs) to travel on the same roads. Existing single-
vehicle planning algorithms on board struggle to handle sophis-
ticated social interactions in the real world. Decisions made by
these methods are difficult to understand for humans, raising the
risk of crashes and making them unlikely to be applied in practice.
Moreover, vehicle flows produced by open-source traffic simula-
tors suffer from being overly conservative and lacking behavioral
diversity. We propose a hierarchical multi-vehicle decision-making
and planning framework with several advantages. The framework
jointly makes decisions for all vehicles within the flow and reacts
promptly to the dynamic environment through a high-frequency
planning module. The decision module produces interpretable ac-
tion sequences that can explicitly communicate self-intent to the
surrounding HVs. We also present the cooperation factor and tra-
jectory weight set, bringing diversity to autonomous vehicles in
traffic at both the social and individual levels. The superiority of our
proposed framework is validated through experiments with multi-
ple scenarios, and the diverse behaviors in the generated vehicle
trajectories are demonstrated through closed-loop simulations.

KEYWORDS
Autonomous Driving, Driving Behavior, Trajectory Generation,
Vehicle Flow

1 INTRODUCTION
With the combined efforts of academia and industry, research on
autonomous driving has flourished over the past decade. Nowa-
days, a growing number of companies are testing their autonomous
vehicles (AVs) on the road, becoming new participants in the traffic
flow besides human-driven vehicles (HVs). The real-world vehicle
flow encompasses a diversity of behaviors at both the social and
individual levels, known as social behavior and driving habit. So-
cial behavior [20, 27] implies how a vehicle interacts with others.
When another vehicle changes lanes, overtakes or merges, the dri-
ver chooses whether to persist in the current movement or yield
according to experience. Drivers also have their own characteristics
when driving. Therefore driving habits [17, 26, 28] is introduced to
describe the individual difference, especially on cruising comfort
and driving safety.

The behavioral diversity of AVs is mainly expressed through the
decision-making and planningmodules, which are core components
of the automated driving system. The prevailing single-vehicle
decision-making and planning approaches can be divided into two

categories: heavy-decision-based frameworks and light-decision-
based ones [4, 11]. The former methods typically separate decision-
making and motion planning to reduce the computational burden
and complexity [15, 24], whereas the light-decision-based ones
improve the algorithm’s adaptability in corner cases by weakening
the decision-making module and increasing the planner sampling
size [5, 7, 10]. However, these approaches struggle to game with
other traffic participants in the real world and therefore exhibit an
insufficient understanding of social interactions.

As vehicle-to-everything (V2X) technologies take hold in self-
driving vehicles, centralized decision-making and trajectory plan-
ning for multiple vehicles in traffic become possible. The central-
ized planner addresses the complex interactions in the vehicle
flow effectively, including competition and collaboration. There
are several types of methods for multi-vehicle decision and plan-
ning. Optimization-based methods [8, 9, 19] provides good mod-
elling of game-theoretic interactions between vehicles. Methods
based on the Monte Carlo tree search [1, 12, 13] employ a tree
structure to manage the interactions and considerably improve the
algorithm’s efficiency by sampling vehicles’ action space. How-
ever, these methods output the long-term control variables directly,
which can be risky when there are HVs on the road. Learning-based
approaches [2, 3, 16, 21] obtain vehicles’ driving strategies from
open datasets and avoid collisions by predicting other cars’ trajec-
tories. The trajectories generated by such methods fail to express
driving intentions explicitly and are therefore poorly understood by
passengers or other road users. They also rely heavily on datasets.

In addition, popular open-source autonomous driving simulators
provide solutions for background traffic generation. SUMO [14]
applies a car-following model and a lane-changing model to each
vehicle. The trajectories produced by this method can avoid colli-
sions but lack vehicle kinematic constraints. CARLA [6] adopts a
traffic manager module to generate commands for vehicles accord-
ing to the current simulation state. However, this approach applies
rigid behavioral models, which leads to excessively conservative
and non-diverse trajectories.

We believe that modeling behavioral diversity provides a bet-
ter understanding of real-world traffic flows and leads to a more
credible autonomous-driving simulation. We propose a hierarchical
multi-vehicle decision and planning framework, where the high
level makes joint decisions for all vehicles in the scenario, and the
low level generates kinematically trajectories for each controlled
AV. The key features of our framework can be summarized as DII:

• Diversity: By adding a vehicle cooperation factor in the deci-
sion module and introducing the trajectory weight set to the
planning module, our framework produces solutions with
social and individual-level diversity.

ar
X

iv
:2

30
2.

06
80

3v
1

 [
cs

.R
O

]
 1

4
Fe

b
20

23

Figure 1: Schematic diagram of the proposed decision-making and planning framework

• Interpretability: The decision module in our framework pro-
duces interpretable action sequences for each AV to keep
the passenger on board aware of the current situation and
explicitly communicate intentions to the surrounding HVs
through brake lights and turn signals.

• Interactivity: We include all vehicles in the traffic flow when
making decisions and can therefore explore complex inter-
actions between them. Moreover, the framework ensures
a real-time response to the dynamic environment through
high-frequency replanning.

The remainder of this paper is organized as follows. Section 2
describes the framework of our proposed methodology. Section 3
introduces the details of the framework, including multi-vehicle
Monte Carlo tree search considering social behavior and parallel tra-
jectory planner incorporating driving habits. Section 4 presents the
performance test along with closed-loop simulations and discusses
the results. Finally, the conclusion and future work are presented
in Section 5.

2 FRAMEWORK
Consider a set V = {𝑉1,𝑉2, · · · ,𝑉𝑁 } containing 𝑁 vehicles includ-
ing AVs and HVs. There are𝐾 AVs available for centralized planning,
denoted asVC = {𝑉1, · · · ,𝑉𝑘 } ⊆ V . The remaining are AVs and all
HVs are considered as uncontrolled vehicles that make decisions
and motion planning independently.

Our task is to generate feasible trajectories with behavioral di-
versity for each controlled vehicle 𝑉𝑖 ∈ VC and collaborating with
uncontrolled vehicles 𝑉𝑗 ∈ {V \ VC} in the environment. We
introduce a two-stage multi-vehicle framework containing both
decision-making and trajectory planning modules. The input to
the framework is a perceivable environment which contains road
conditions, route information, vehicle status and predictions of un-
controlled vehicles. The schematic diagram of our proposed frame-
work is illustrated in Figure 1, where vehicles with IDs 2 and 3 are
AVs controlled by our framework while vehicle 1 is an uncontrolled
vehicle. The details of the two stages in our proposed framework
are described below.

In the first stage, we propose a decision module to address the so-
cial interactions among vehicles. This module generates long-term,

coarse decisions for all vehicles jointly and simultaneously. The
environment is constructed on the Frenét frame [18] for decision-
making, which allows the decision module to focus on inter-vehicle
interactions without considering road constraints. Since actions
like continuous lane-changing and overtaking take a relatively long
time to complete, the decision module is required to be forward-
looking and consistent. The decision module solves the interaction
game between vehicles by making centralized joint decisions on
the vehicle flow. It can generate diverse social behaviors in the flow
via setting different cooperation factors in the reward function. The
decision module generates a temporal sequence of discrete actions
for each controlled vehicle. Since each action in the sequence has a
physical meaning, such as changing lanes, accelerating, maintaining
speed, etc., the output of our decision module is interpretable.

In the second stage, the planning module receives discrete action
sequences from the first stage and generates continuous kinematic-
feasible trajectories for each controlled vehicle. Thanks to the
forward-looking nature of our front-end decision module, the tra-
jectory planning module only needs to generate trajectories within
a short planning horizon. Our planning module adopts a distributed
parallel architecture, i.e. running a planner independently for each
vehicle, which more closely resembles human driving in the real
world. For each parallel planner, the leading part of its received
action sequence is selected as the guidance to generate a continuous
trajectory that conforms to the vehicle kinematic constraints in
Cartesian space. This module reflects the driving habits of different
drivers through planner’s selection strategy for various trajecto-
ries. It is worth emphasizing that the planner would maintain a
high replanning frequency and continuously predicts surrounding
vehicles to avoid potential collisions.

Our proposed two-stage framework provides an interpreted re-
sult with physical meaning for each module,allowing the AV to
inform passengers of the current situation and to explicitly commu-
nicate its own intentions to the HV surrounding them. Meanwhile,
it guarantees bottom-line security. The planning module realizes
collision risks by its prediction of other vehicles and generates
collision-free trajectories, even if the decision module produces
some impractical action sequences.

Figure 2: Procedure of the Monte-Carlo Tree Search

3 METHODOLOGY
3.1 Joint Multi-vehicle Decision-making
3.1.1 Basic Monte-Carlo Tree Search Algorithm. Monte-Carlo Tree
Search, also known as MCTS, is a heuristic search algorithm for
the decision process which analyses the search space for the most
promising actions based on the Monte Carlo sampling method. The
general MCTS algorithm [1] includes four phases in one search
iteration: selection, expansion, simulation, and back-propagation,
as shown in Figure 2.

The selection phase is performed based on an existing search tree.
The algorithm will recursively select the most valuable child node
using a tree policy until reaching a non-fully expanded node. Then,
the selected node is expanded with one of the remaining possible
actions to get a new leaf node. From this node, the algorithm will
use a default policy (also called roll-out) to perform the simulation
until it reaches a terminal node. At the back-propagated phase, the
algorithm will extract the rewards from the simulation sample and
then use them to update the average rewards through all nodes that
have been traversed. After reaching predefinedmaximum iterations,
the solution can be obtained by greedily selecting the child node
with a maximum reward at each layer.

The standard UCT algorithm [1] is applied in order to address
the exploration-exploitation dilemma in the selection phase. The
UCT value of child node 𝑗 can be calculated by:

𝑈𝐶𝑇 = 𝑋 𝑗 + 2𝐶𝑝

√︄
2 ln𝑛
𝑛 𝑗

(1)

where 𝑋 𝑗 is the average reward of node 𝑗 , 𝑛 is the number of times
the parent node of 𝑗 has been visited,𝑛 𝑗 is the number of times child
j has been visited, and 𝐶𝑝 > 0 is a constant to balance exploration
and exploitation. The reward distribution of each node should lie
between 0 and 1.

The vanilla MCTS algorithm typically makes decisions for a
single agent. However in our framework, the decisions are required
for all vehicles in the flow at the same time. A trivial approachwould
be to perform a separate MCTS search for each vehicle. However
performing MCTS searches separately for each vehicle requires
accurate predictions of other vehicles’ behavior before making a
decision,. This violates Vapnik’s Principle [25] that"When solving

Figure 3: A metanode at time step 𝑡 in the MCTS

a problem, don’t solve a harder problem as an intermediate step.",
as modeling and predicting the behavior of other agents is a harder
problem.

3.1.2 Metanode in the MCTS. Several multi-vehicle decision meth-
ods based on the Monte Carlo tree search have been developed.
Lenz et al. [12] propose amethod for generating anticipatory and co-
operative behavior of AVs, but its direct output of motion via MCTS
is poorly robust to dynamic environments, especially with HVs
mixing in the road. Another approach [13] sets priorities for the ve-
hicles and makes decisions from highest priority to lowest, with the
subsequent agent required to satisfy the decisions completed by the
preceding ones. However, such approaches fail to express the dif-
ferent social behaviors in the flow, as the low-priority vehicles only
passively respond to the decisions made by the high-priority ones.
Besides, it’s never easy to assign priority to every single vehicle in
the traffic flow.

Instead, our approach takes the HVs in the traffic flow into ac-
count and there is no priority between vehicles in the decision-
making process. We replace the node in the general MCTS method
with a metanode that can generate multi-vehicle actions simulta-
neously. The metanode’s extension is shown in Figure 3, where
vehicle 2 and 3 are vehicles controlled by our framework while
vehicle 1 is an uncontrolled vehicle.

For a metanode extended to time step 𝑡 , it receives all controlled
vehicle’s state at the current moment. In particular, the state for
vehicle 𝑉𝑖 at time step 𝑡 can be described as x𝑡

𝑖
= [𝑠, 𝑑, 𝑣]𝑇 , 𝑠 and 𝑑

are the Frenét coordinates of the vehicle and 𝑣 is the longitudinal
velocity. Similar to [12], we define a set of possible actions for
each controlled vehicle to take in one time step. As listed in Table
1, there are five actions - maintain speed (KS), accelerate (AC),
decelerate (DC), change lanes to the left (LCL) and to the right
(LCR). By selecting different actions, the vehicle can then calculate
its corresponding state at the next time step. As for uncontrolled
vehicles in the flow, we assume they performing a lane-keeping (KL)
action. This action dynamically adjusts their velocity and always
maintains an appropriate distance from the leading vehicle during
the decision-making process.

Table 1: Actions available for vehicles in one time step

Action State change Description

KS [𝑣Δ𝑡, 0, 0] Maintain the current velocity

AC
[
𝑣Δ𝑡 + 𝑎𝑎𝑐𝑐

2 Δ𝑡2, 0, 𝑎𝑎𝑐𝑐Δ𝑡
] Increase the current velocity

with a fixed acceleration 𝑎𝑎𝑐𝑐

DC
[
𝑣Δ𝑡 − 𝑎𝑑𝑒𝑐

2 Δ𝑡2, 0,−𝑎𝑑𝑒𝑐Δ𝑡
] Decrease the current velocity

with a fixed deceleration 𝑎𝑑𝑒𝑐
LCL [𝑣Δ𝑡,−Δ𝑑, 0] Make a partial left lane change

with a width of Δ𝑑

LCR [𝑣Δ𝑡,Δ𝑑, 0] Make a partial right lane change
with a width of Δ𝑑

KL - Keep the current lane
(Only for uncontrolled vehicles)

Since decisions need to be made for all vehicles simultaneously
within a metanode, the output of the metanode would combine each
vehicle’s possible behavior. As a result, the search tree grows expo-
nentially when the MCTS gradually evaluates the whole interaction
decision space. Finding the best solution that is computationally
feasible becomes impossible in practice. Therefore pruning the
expansion of the metanode proves necessary.

3.1.3 Pruning in MCTS. Although each vehicle has five optional
actions, not every one of them is feasible and some may lead to a
potential collision. Obviously, vehicles on either side of the road
cannot continue to make lane-changing actions to over borderlines.
According to [22], vehicles in traffic should maintain a shortest
safe distance 𝐷𝑠 from its leading vehicle. 𝐷𝑠 consisted of two parts:
reaction distance and minimum headway, which are defined as:

𝐷𝑠 = 𝑣 · 𝜏 +𝑀𝑇𝐻 · Δ𝑣 (2)

where 𝜏 > 0 and 𝑀𝑇𝐻 > 0 are both time constants, representing
reaction time and minimum time headway respectively. 𝑣 denotes
vehicle longitude velocity and Δ𝑣 = 𝑣 − 𝑣𝑙 denotes the velocity
difference between the self and lead vehicles. Further, the velocity
limit that any single vehicle in the flow should satisfy is:

𝑣 ∈
[
𝑣 𝑓 −

Δ𝑠𝑓 − 𝜏 · 𝑣 𝑓
𝑀𝑇𝐻

,min(𝑀𝑇𝐻 · 𝑣𝑙 + Δ𝑠𝑙
𝜏 +𝑀𝑇𝐻 ,

Δ𝑠𝑙
𝜏

)
]

(3)

where Δ𝑠𝑙 and Δ𝑠𝑓 indicate the gap between the current vehicle
and its leading/following vehicle, respectively. 𝑣𝑙 and 𝑣 𝑓 denote the
velocity of the leading and following vehicle. It is worth noting
that for the upper limit, even if the vehicle’s current velocity is
slower than the leading vehicle, it still needs to maintain a minimum
reaction distance.

In the metanode at time step 𝑡 , when vehicle 𝑖 takes an action
𝑎 from Table 1 and the resulting state x𝑡+1

𝑖
does not satisfy Equa-

tion (3), the action 𝑎 becomes invalid and the corresponding state
x𝑡+1
𝑖

will be abandoned. Also for all valid state combinations within
the metanode, the algorithm checks for collisions between new
states in each combination and for conflicts in the process of reach-
ing the states (e.g. two vehicles changing into each other’s lanes).
If a conflict occurs, the action combination should not be extended
for the metanode at time step 𝑡 + 1. Through these techniques, the
decision space is significantly reduced and the search efficiency
is guaranteed. As Figure 3 shows, these three vehicles originally
generated 52 = 25 possible action combinations, and only 4 valid

combinations remain after pruning. The efficiency of the algorithm
improves more significantly when facing complex traffic situations.

3.1.4 Reward Function with Social Behavior. During the simulation
phase of MCTS, the algorithm continues to construct the metanode,
but only one valid action combination is selected to extend the next
time step until the simulation terminates. Each simulation can be
terminated either when all vehicles have traveled a certain distance
in their target lane, or when the simulation reaches the maximum
time step with any vehicles not completing their intentions. Then
a reward for this simulation should be calculated from the result.

We first calculate the reward 𝑅𝑖 separately for each vehicle 𝑖 in
the traffic flow. The reward 𝑅𝑖 has three parts, namely driving in
the target lane, driving in the lane’s center line and maintaining
the consistency of the actions. Besides, the reward should meet in
the range of 0 to 1.

For the vehicle flow to exhibit a diversity of social behaviors,
the cooperative tendency of the vehicle needs to be characterized
by the reward. Similar to [20], we introduce a behavior reward
considering both reward to self and reward to others:

𝑅 = 𝑅self + 𝛾 𝑅other (4)

where 𝛾 ∈ [0, 1] being the cooperation factor. 𝛾 = 0 implies the
vehicle is egoistic and takes no account of the behavior of other
vehicles, whereas 𝛾 = 1 denotes the vehicle treats other vehicles
equally important to itself when making decisions. Each vehicle 𝑖
in the flow possesses its unique factor 𝛾𝑖 .

Since each metanode in the search tree handles the actions of
the whole vehicle flow, the reward of the simulation is obtained by
combining all vehicles’ behavior rewards:

𝑋flow =
1
𝐾

∑︁
1≤𝑖≤𝐾

𝑅𝑖 + 𝛾𝑖
∑
𝑗≠𝑖 𝑅 𝑗

1 + (𝐾 − 1)𝛾𝑖
(5)

Since 𝑅𝑖 ∈ [0, 1], the distribution of 𝑋flow is also guaranteed to
stay in [0, 1]. Finally, reward 𝑋flow is used to update the average
rewards of all selected metanodes in the back-propagation phase.

3.2 Parallel Vehicle Trajectory Planning
The decision module gives a coarse-grained action sequence for
each vehicle, but these actions take no account of vehicle kinematics
and road curvature. They thus cannot be performed by the vehicles
directly. Meanwhile, the generated discrete actions may still expose
the vehicles to potential collision risk. We employ a trajectory
planning module after decision-making to generate continuous,
kinematic feasible trajectories and ensure the bottom-line safe of
the whole framework.

3.2.1 Conversion between Cartesian and Frenét Frame. As men-
tioned earlier, we perform decision-making in the Frenét coordinate
system to simplify the calculations. However, trajectories generated
by the planning module require converting to the global Cartesian
frame for verifying the vehicle’s kinematic constraints. Here we
briefly describe the conversion from the Frenét frame to the Carte-
sian coordinates.

A Frenét coordinate system is constructed via a reference path
generated by the center-line of the current lane, it is denoted by
the arc-length parameter 𝑠 along the reference path and the lateral
offset 𝑑 . ¤𝑠 and ¤𝑑 are the derivative with respect to time. For a vehicle

Figure 4: The pipeline of a single-vehicle trajectory planner

with the Frenét coordinates
[
𝑠, ¤𝑠, 𝑑, ¤𝑑

]
, we can calculate its position

(𝑥,𝑦), velocity 𝑣 , orientation \ in the Cartesian frame according to
the transformation proposed in [29]:

𝑥 = 𝑥𝑟 − 𝑑 sin\𝑟
𝑦 = 𝑦𝑟 + 𝑑 cos\𝑟
𝑣 =

√︃
[(1 − ^𝑟𝑑) ¤𝑠]2 + ¤𝑑2

\ = arcsin
(¤𝑑
𝑣

)
+ \𝑟

(6)

where (𝑥𝑟 , 𝑦𝑟), \𝑟 and ^𝑟 denote the position, the orientation and
curvature of the reference path at length 𝑠 .

3.2.2 Feasible Trajectory Planner. As mentioned in Section 2, in the
planning module we employ a parallel architecture for trajectory
planning of each vehicle, which not only improves the runtime
efficiency of the framework but also resembles the way humans
drive in the real world. The pipeline of the single-vehicle trajectory
planner is shown in Figure 4.

For an AV 𝑉𝑖 ∈ VC under our control, it receives an action
sequence from the decision module. Then one of the parallel plan-
ners takes over. The planner first predicts the future trajectories
of other vehicles in the flow. Then it splits the different actions in
the sequence and plans a sub-trajectory for each action segment.
Finally, the planner connects all the sub-trajectories to obtain the
final feasible and continuous vehicle trajectory.

Our sub-trajectory planner is similar to the one proposed in
[29], but with some differences in the pipeline. First, the algorithm
determines the range of sub-trajectory’s target state based on the
current action segment. Although the state change for each action
is a constant when making decisions as shown in Table 1, we ex-
tend it to a continuous region of target states for sub-trajectory

planning. Additionally, for vehicles with lane-keeping actions, the
planner creates a larger target state region to make rational in-lane
decisions. The planner then uniformly samples a number of target
states within the predefined region. We employ quintic polynomial
curves in the Frenét frame to generate the jerk-optimal connec-
tions between the start state and all sampled target states of the
sub-trajectory. After that, we convert each sub-trajectory to Carte-
sian coordinate by using Equation 6, including its position, velocity
and heading angle. All alternative sub-trajectories are calculated
with a cost function, which is detailed in Section 3.2.3. We check
whether each sub-trajectory meets the kinematic constraints and
is collision-free with other vehicles in the flow. The sub-trajectory
that satisfies all the constraints with the smallest cost is selected
and the final state of this sub-trajectory is set as the initial state for
the next sub-trajectory.

3.2.3 Cost Function considering Driving Habits. For each alterna-
tive sub-trajectory, a cost function should be calculated to evaluate
its safety and comfort. In particular, there are several cost terms in
the function:

• Curve energy cost: 𝐽𝑖,𝑐𝑢𝑟 =
∑
^2
𝑖
, ^𝑖 denotes the curvature of

a trajectory point. This penalty trajectory with sharp turns.
• Heading difference cost: 𝐽𝑖,𝜙 =

∑ |𝜙𝑖 − 𝜙𝑟 |2,𝜙𝑖 denotes the
orientation angle of the vehicle and 𝜙𝑟 indicates the road’s
direction at the point.

• Out of line cost: 𝐽𝑖,𝑜𝑢𝑡 =
∑ |𝑑𝑖 |2, 𝑑𝑖 denotes the lateral offset

in Frenét frame. This term is only active for actions except
for lane-changing ones.

• Acceleration cost: 𝐽𝑖,𝑎𝑐𝑐 =
∑
𝑎2
𝑖
, 𝑎𝑖 denotes vehicle’s acceler-

ation at a trajectory point.
• Jerk cost: 𝐽𝑖, 𝑗𝑒𝑟𝑘 =

∑
𝑗2
𝑖
, 𝑗𝑖 denotes vehicle’s jerk (derivative

of acceleration) at a trajectory point. This term and the accel-
eration cost both contribute to the comfort of the trajectory.

• Dynamic obstacle cost: 𝐽𝑖,𝑜𝑏𝑠 . This term serves to avoid the
vehicle from being too close to the surrounding vehicles,
which is described in detail below.

Dynamic obstacle cost takes the distance between a vehicle fol-
lowing a trajectory and dynamic obstacles on the road (i.e., sur-
rounding vehicles) into account. The cost for vehicle 𝑉𝑖 is defined
as:

𝐽𝑖,𝑜𝑏𝑠 =

𝑇∑︁
𝑡=0

∑︁
∀𝑗≠𝑖

𝐽𝑖,𝑜𝑏𝑠 (𝑡, 𝑗) (7)

where 𝐽𝑖,𝑜𝑏𝑠 (𝑡, 𝑗) characterizes the position of vehicle 𝑉𝑗 with re-
spect to the current vehicle 𝑉𝑖 at time step 𝑡 . As shown in Figure 5,
we introduce an alert zone whose shape is a rectangle surrounding
the body of the vehicle 𝑉𝑖 . The zone has a length of the shortest
safe distance 𝐷𝑠 defined by Equation 2 in front of the vehicle and a
length of 1.5 times the body length behind the vehicle. The width
of the alert zone is 1.5 times the width of the body.

The position of the vehicle 𝑉𝑗 in the flow relative to 𝑉𝑖 can be
divided into three different types: outside the alert zone, inside the
alert zone without collisions, and having collisions with the current
position of 𝑉𝑖 . The vehicle 𝑉𝑗 is safe outside the alert zone and
therefore cost-free, whereas its direct collision with the trajectory
is unacceptable. In the alert zone, the closer vehicle 𝑉𝑗 is to 𝑉𝑖 , the

Figure 5: The alert zone of vehicle 𝑉𝑖

higher the cost. In particular, 𝐽𝑖,𝑜𝑏𝑠 (𝑡, 𝑗) is defined as follows:

𝐽𝑖,𝑜𝑏𝑠 (𝑡, 𝑗) =

0, 𝑉𝑗 outside alert zone
𝐶𝑧 (2 − |𝐷 |𝑥

𝐷𝑠+1.5𝑙 −
|𝐷 |𝑦
1.5𝑑), 𝑉𝑗 in alert zone

∞, 𝑉𝑗 has collision
(8)

where |𝐷 |𝑥 and |𝐷 |𝑦 represent the component of the shortest dis-
tance from the vehicle 𝑉𝑗 to vehicle 𝑉𝑖 along the length and width
of the alert zone, respectively. 𝑙 and 𝑑 denote the length and width
of vehicle body and 𝐶𝑧 > 0 is a cost constant.

All the aforesaid terms are summed up as the cost function:

𝐽𝑖 =
∑︁

𝑤 (·) 𝐽𝑖,(·) (9)

where 𝐽𝑖,(·) ∈ {𝐽𝑖,𝑐𝑢𝑟 , 𝐽𝑖,𝜙 , 𝐽𝑖,𝑜𝑢𝑡 , 𝐽𝑖,𝑎𝑐𝑐 , 𝐽𝑖, 𝑗𝑒𝑟𝑘 , 𝐽𝑖,𝑜𝑏𝑠 } represents
all the cost itemsmentioned above, and𝑤 (·) is the weight parameter
corresponding to each cost item. We observe different drivers in
traffic flow may choose various trajectories depending on their
driving habits. In other words, drivers weigh up these trajectory’s
cost terms differently. For instance, some drivers may be more
concerned with driving comfort, while others prefer to keep a
longer safe distance from other vehicles. Therefore, we define a
trajectory weight setW containing𝑀 weight vectors based on the
driver’s driving habits:

W = {w1,w2, · · ·w𝑀 } (10)

Each weight vectorw contains a unique combination of weights for
all cost terms,w = [𝑤𝑐𝑢𝑟 , 𝑤𝜙 , 𝑤𝑜𝑢𝑡 , 𝑤𝑎𝑐𝑐 , 𝑤 𝑗𝑒𝑟𝑘 , 𝑤𝑜𝑏𝑠]. AVs in the
flow pick different weight vectors to generate their trajectories, in
conjunction with the cooperation factor considering social behavior
in the decision module, bringing diversity to the whole vehicle flow.

4 EXPERIMENT
We utilize real-world driving records from the CitySim dataset [30]
to generate the experimental environment, which consisted of three
different scenarios: Freeway, Ramp, and Roundabout, as shown in
Figure 6. The Freeway scenario is the simplest one, containing a
four-lane expressway. The ramp scenario includes a three-lanemain
road with an on-ramp merging into it. The roundabout scenario
measures the performance of vehicle flows at an unsignalled two-
lane roundabout entrance. We take the vehicle information from
the dataset as our experiment’s initial state of the vehicle flow.
The vehicles about to make a lane change (including entering and
exiting the ramp) and the vehicles directly interacting with them

Figure 6: Vehicle trajectories in the different scenarios

Table 2: Three types of driving behaviors

Type Aggressive Normal Conservative

𝛾 0.1 0.5 0.9
𝑤𝑖,𝑜𝑏𝑠 2.0 4.0 6.0
𝑤𝑖,𝑜𝑢𝑡 6.5 5.0 4.0
𝑤𝑖, 𝑗𝑒𝑟𝑘 0.7 1.0 1.2

are set as AVs controlled by the centralized planner. In contrast,
other unaffected vehicles are set as uncontrolled HVs. The vehicles’
lane change intentions are fed into the framework as input. The
proposed framework is implemented entirely in Python for fast
prototyping.

The vehicle size in the flow is set to 5m × 2m. The constant𝐶𝑝 =

1/
√
2 in Equation 1. We set reaction time 𝜏 = 0.5s and minimum

time headway 𝑀𝑇𝐻 = 3s in Equation 2. The fixed acceleration
𝑎𝑎𝑐𝑐 and deceleration 𝑎𝑑𝑒𝑐 in available actions of Table 1 are set to
0.6m/s2. The time step is set to 1.5s in the decision module and 0.1s
in the planning module. To generate vehicle flows with diversity,
three different types of driving behavior are defined: aggressive,
normal and conservative. The aggressive vehicle takes less account
of the surrounding vehicles when making decisions and thus has a
smaller cooperation factor 𝛾 , along with a higher tolerance to both
obstacle avoidance and acceleration changes. The opposite is true
for the conservative vehicles. The specific style-related parameters
are defined in Table 2.

Our proposed framework generates promising planning solu-
tions within all three scenarios. The generated traffic trajectories are
shown in Figure 6, where the controlled AVs in the flow is denoted
by colored trajectories and uncontrolled HVs by grey trajectories.
The interpretable actions generated by the decision module are
shown in the figure through the brake lights and turn signals.

We further compare and analyze the performance of our pro-
posed framework and the diversity of the solutions it generates in
the following sections.

4.1 Framework Performance
In this subsection, we test the performance of the proposed frame-
work. To evaluate the effectiveness of our proposed method, we
first implemented a sequential MCTS approach as a comparison,

Table 3: Comparative experiments in the Freeway scenario

2 Controlled AVs 3 Controlled AVs 4 Controlled AVs
Sequential
MCTS

Ours w/o
Planning Ours Sequential

MCTS
Ours w/o
Planning Ours Sequential

MCTS
Ours w/o
Planning Ours

Sucess Rate ↑ 100% 100% 100% 100% 100% 100% 70% 90% 100%
Avg Expand Nodes ↓ 1304.1 1196.6 1148.7 1387.6 1127.8 1037.6 1706.6 1785.0 1527.3
Avg Finish Time (s) ↓ 3.57 5.75 5.68 3.57 4.95 3.50 4.58 9.29 8.93
Min Distance (m) ↑ 4.34 8.41 9.13 4.74 7.02 10.78 5.02 7.54 10.94

which is used in [13] (marked as Sequential MCTS). This method
assigns a right-of-way priority to each vehicle in the flow and
makes decisions for vehicles in order of priority at each decision
step. In this experiment, vehicles with greater longitudinal distance
possess a higher decision priority. As the previous study did not con-
sider uncontrolled HVs in the scenario, we employ a car-following
model [23] to predict all HVs’ trajectories and feed them into the
sequential MCTS as dynamic obstacles. We also include a decision-
only framework (marked as Ours w/o Planning) in the comparison
experiments to demonstrate the necessity and effectiveness of the
planning module in our proposed framework.

According to [23], the longitudinal acceleration in sequential
MCTS is chosen to be [−1, 0, 1]m/s2, and the lateral velocity is
chosen to be [−1.2, 0, 1.2]m/s. We set the decision time step for se-
quential MCTS and decision-only framework to 1.0s. The planning
horizon for all three methods is 10s and the maximum iteration
number of MCTS is 3000.

The experiments are conducted in the four-lane freeway scenario
with the number of controllable AVs set to 2, 3, and 4. Eachmethod is
repeated ten times under the same experimental setup. We measure
each method’s success rate, the average number of expansion nodes
in MCTS, the average time to finish the vehicle’s intention and the
minimum inter-vehicle distance in the generated solutions. The
results are shown in Table 3.

All three methods achieve a 100% success rate in the freeway
scenarios with two and three AVs. However, when the number of
controlled AVs reaches four, sequential MCTS can only attain a
success rate of 70%. The decision-only approach has a 90% success
rate, while our framework still manages to pass all tests. As the
sequential MCTS defines the priority for vehicles in the flow, the
higher-priority vehicles do not yield to the lower-priority ones
when making decisions. This results in the high-priority vehicles
taking locally optimal decisions that make it impossible for the
subsequent vehicles to complete their intentions.

The number of extended nodes in the search tree measures the
search efficiency of each method. Our proposed framework has
fewer available actions for each vehicle and adopts various pruning
strategies as we mentioned in Section 3.1.3. Experimental results
show that our approach expands fewer nodes than the comparison
methods, which means that our framework searches for the optimal
solution faster without wasting actions on infeasible actions.

In terms of the quality of the solutions, although the average time
for vehicles to complete their intentions is shorter in the solutions
generated by the sequential MCTS, the minimum inter-vehicle
distances of these solutions are shorter and hence carry more risk.

The shortest distance between vehicles in the solution planned by
sequential MCTS is generally less than 5 meters (the length of the
vehicle), which can easily lead to rear-end collisions. Our decision
module, in contrast, achieves a minimum distance of seven to eight
meters thanks to introducing the shortest safe distance 𝐷𝑠 . The
planning module refines the trajectory further, bringing the whole
approach to a minimum distance of around 10 meters, i.e., twice the
vehicle length. Besides, the whole framework has a shorter average
intention finishing time compared to the decision-only approach,
even outperforming the sequential MCTS in the case of 3 vehicles.

4.2 Closed-loop Simulation
We conducted several closed-loop simulations in the ramp scenario
to investigate the diversity of the vehicle trajectories regarding
social behavior and driving habits. We also demonstrate the pro-
posed framework’s responsiveness when facing human drivers’
unanticipated actions.

The closed-loop simulation runs at 10Hz. Our decision-making
module has a horizon of 10.5 seconds, with 1.5 seconds for each
action. The horizon of the planning module is 3 seconds with a
time step of 0.1 seconds, and the replanning cycles are 0.5 seconds.
Our test scenario is shown in Figure 8. Vehicles with the number
2, 4, and 5 are AVs controlled by our framework, while vehicles
with the number 1, 3, and 6 are HVs in the environment. Vehicles
2 and 5 are driving side by side in the adjacent lanes of the main
road, while vehicle 4 is on the ramp about to merge onto the main
road. In addition, vehicle 2 intends to change its lane to the right,
creating a complex situation where three cars in the flow compete
for the right-of-way of the rightmost lane simultaneously. Figure 7
shows three different cases arising from this same initial state. The
velocity profiles of controlled AVs in each case are shown on the
right of the figure.

In Case 1, vehicle 2 is assigned an aggressive driving behavior,
vehicle 4 adopts a conservative driving behavior and vehicle 5 is
assigned the normal behavior. Their style-related parameters are
set according to Table 2. The closed-loop experimental results show
that due to its backward initial position, vehicle 5 slows down
to give way to vehicle 4, who maintains its initial velocity and
merges onto the main road. At the moment 𝑇1, as vehicle 2 has a
more aggressive driving behavior, it is unlikely to yield to vehicle 4.
Vehicle 2 continues to drive in the left front of vehicle 4 and indicates
its intention to change lanes. Finally, vehicle 2 slows down to make
space for vehicle 4 to complete its lane change at 𝑇2.

We change the driving behavior of the Avs in Case 2. The driving
behavior of vehicle 4 is altered to aggressive and vehicle 2 is adjusted

Figure 7: Three different cases in the closed-loop simulation

Figure 8: Vehicles’ initial states in closed-loop simulation

to conservative. The driving behavior of vehicle 5 remains the same.
Vehicle 5 still slows down to let vehicle 4 merge into the main road
at𝑇1, but this time vehicle 4 does not yield to vehicle 2’s lane change
and chooses to accelerate through it. Vehicle 2, aware of vehicle 4’s
acceleration, chooses to slow down and completes the lane change
action after vehicle 2, which is quite different from Case 1.

In Case 3 we explore what happens when an uncontrollable HV
in the environment does not cooperate with AV’s behavior. We
change vehicle 5 from AV to HV that is not controlled by our plan-
ner and set a larger initial speed for it. Instead of slowing down to
give way to vehicle 2, as our framework expected, it accelerates into
the ramp entrance, creating a quite dangerous situation. Thanks to
the high-frequency replanning in our planning module, vehicle 2
and vehicle 4 abort their original actions from the decision module
when they realize that vehicle 5 is accelerating in order to avoid

the potential collision. Vehicle 4 performs a deceleration and ve-
hicle 2 keeps its original lane. Once vehicle 5 has passed, vehicle
2 and 4 then complete their lane-changing and merging behavior
safely. This case demonstrates the importance of integrating the
planning module into the framework, which can quickly respond
to changes in the road and resolve potential collisions between
vehicles, safeguarding the entire vehicle flow.

5 CONCLUSIONS
This paper presents a novel hierarchical multi-vehicle decision-
making and planning framework that produces trajectories with
diversity, interactivity, and interpretability in mixed AV and HV
scenarios. By introducing the vehicle’s cooperation factor in the de-
cision module and the trajectory weight set in the planning module,
the trajectories generated by our framework are diverse at both the
social interaction and individual habit levels. Our framework makes
decisions jointly for all vehicles in the flow and ensures a real-time
response to the dynamic environment through a high-frequency re-
planning method. Also, the decision module generates interpretable
action sequences, which are leveraged to inform passengers of the
current situation and explicitly communicate self-intents to the
surrounding HVs.

In the further work, our framework can be used to generate
background traffic around the ego car in the autonomous driving
simulator. It can also be utilized to perform data augmentation of
the existing traffic datasets with different driving styles. In addition,
our framework is generic in nature, meaning each module’s internal
algorithms can be replaced, provided their respective inputs and
outputs are satisfied.

REFERENCES
[1] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and AI in Games 4, 1 (mar 2012),
1–43. https://doi.org/10.1109/TCIAIG.2012.2186810

[2] Sergio Casas, Wenjie Luo, and Raquel Urtasun. 2021. IntentNet: Learning to
Predict Intention from Raw Sensor Data. CoRL (jan 2021). arXiv:2101.07907
http://arxiv.org/abs/2101.07907

[3] Dian Chen and Philipp Krähenbühl. 2022. Learning From All Vehicles. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 17222–17231.

[4] Laurene Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien Glaser.
2019. A review of motion planning for highway autonomous driving. IEEE
Transactions on Intelligent Transportation Systems 21, 5 (2019), 1826–1848.

[5] Wenchao Ding, Lu Zhang, Jing Chen, and Shaojie Shen. 2019. Safe trajectory
generation for complex urban environments using spatio-temporal semantic
corridor. IEEE Robotics and Automation Letters 4, 3 (2019), 2997–3004. https:
//doi.org/10.1109/LRA.2019.2923954

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[7] Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang Zhang, Li Zhuang, Dong Li,
Weicheng Zhu, Jiangtao Hu, Hongye Li, and Qi Kong. 2018. Baidu Apollo EM
Motion Planner. (2018). arXiv:1807.08048

[8] Jaime F Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S Shankar Sastry, and
Anca D Dragan. 2019. Hierarchical game-theoretic planning for autonomous
vehicles. In 2019 International conference on robotics and automation (ICRA). IEEE,
9590–9596.

[9] Peng Hang, Chao Huang, Zhongxu Hu, and Chen Lv. 2022. Driving conflict
resolution of autonomous vehicles at unsignalized intersections: A differential
game approach. IEEE/ASME Transactions on Mechatronics 27, 6 (2022), 5136–5146.

[10] Thomas M. Howard and Alonzo Kelly. 2007. Optimal Rough Terrain Trajectory
Generation for Wheeled Mobile Robots. The International Journal of Robotics
Research 26, 2 (2007), 141–166. https://doi.org/10.1177/0278364906075328

[11] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. 2015.
Real-time motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions. Transportation Research Part C: Emerging
Technologies 60 (2015), 416–442. https://doi.org/10.1016/j.trc.2015.09.011

[12] David Lenz, Tobias Kessler, and Alois Knoll. 2016. Tactical cooperative planning
for autonomous highway driving using Monte-Carlo Tree Search. IEEE Intelligent
Vehicles Symposium, Proceedings 2016-Augus, Iv (2016), 447–453. https://doi.org/
10.1109/IVS.2016.7535424

[13] Chenran Li, Tu Trinh, Letian Wang, Changliu Liu, Masayoshi Tomizuka, and Wei
Zhan. 2022. Efficient Game-Theoretic Planning With Prediction Heuristic for
Socially-Compliant Autonomous Driving. IEEE Robotics and Automation Letters
7, 4 (2022), 10248–10255. https://doi.org/10.1109/LRA.2022.3191241

[14] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. 2018. Microscopic Traffic Simulation using
SUMO, In The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE Intelligent Transportation Systems Conference (ITSC). https://elib.
dlr.de/124092/

[15] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov,
Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke,
et al. 2008. Junior: The stanford entry in the urban challenge. Journal of field
Robotics 25, 9 (2008), 569–597.

[16] Zhenghao Peng, Quanyi Li, Ka Ming Hui, Chunxiao Liu, and Bolei Zhou. 2021.
Learning to Simulate Self-Driven Particles System with Coordinated Policy Opti-
mization. Advances in Neural Information Processing Systems 34 (2021), 10784–
10797.

[17] Thomas A Ranney. 1994. Models of driving behavior: a review of their evolution.
Accident analysis & prevention 26, 6 (1994), 733–750.

[18] Vladimir Y. Rovenski. 2006. Differential geometry of curves and surfaces: A concise
guide. Birkhäuser, Boston, MA. https://doi.org/10.1007/b137116

[19] Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca DDragan. 2016. Planning
for autonomous cars that leverage effects on human actions. In Robotics: Science
and systems, Vol. 2. Ann Arbor, MI, USA, 1–9.

[20] Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and
Daniela Rus. 2019. Social behavior for autonomous vehicles. Proceedings of
the National Academy of Sciences of the United States of America 116, 50 (2019),
2492–24978. https://doi.org/10.1073/pnas.1820676116

[21] Qiao Sun, Xin Huang, Junru Gu, Brian C Williams, and Hang Zhao. 2022. M2I:
From factored marginal trajectory prediction to interactive prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6543–6552.

[22] D. Swaroop and K. R. Rajagopal. 2001. A review of constant time headway policy
for automatic vehicle following. In IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC. IEEE, Oakland, CA, 65–69. https://doi.org/10.1109/
itsc.2001.948631

[23] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic
states in empirical observations and microscopic simulations. Physical review E
62, 2 (2000), 1805.

[24] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. 2008.
Autonomous driving in urban environments: Boss and the urban challenge.
Journal of field Robotics 25, 8 (2008), 425–466.

[25] Vladimir Vapnik. 2006. Estimation of Dependences Based on Empirical Data.
Springer, New York, NY. https://doi.org/10.1007/0-387-34239-7

[26] Junhua Wang, Wenxiang Xu, Ting Fu, Hongren Gong, Qiangqiang Shangguan,
and Anae Sobhani. 2022. Modeling aggressive driving behavior based on graph
construction. Transportation Research Part C: Emerging Technologies 138 (2022),
103654.

[27] Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun.
2022. Social Interactions for Autonomous Driving: A Review and Perspectives.
Foundations and Trends in Robotics 10, 3-4 (2022), 198–376. https://doi.org/10.
1561/2300000078

[28] Yunpeng Wang, Junjie Zhang, and Guangquan Lu. 2018. Influence of driving
behaviors on the stability in car following. IEEE Transactions on Intelligent
Transportation Systems 20, 3 (2018), 1081–1098.

[29] MoritzWerling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. 2010. Optimal
trajectory generation for dynamic street scenarios in a frenét frame. In 2010 IEEE
International Conference on Robotics and Automation. IEEE, Anchorage, Alaska,
USA, 987–993. https://doi.org/10.1109/ROBOT.2010.5509799

[30] Ou Zheng, Mohamed Abdel-Aty, Lishengsa Yue, Amr Abdelraouf, Zijin Wang,
and Nada Mahmoud. 2022. CitySim: A Drone-Based Vehicle Trajectory Dataset
for Safety Oriented Research and Digital Twins. https://doi.org/10.48550/ARXIV.
2208.11036

https://doi.org/10.1109/TCIAIG.2012.2186810
https://arxiv.org/abs/2101.07907
http://arxiv.org/abs/2101.07907
https://doi.org/10.1109/LRA.2019.2923954
https://doi.org/10.1109/LRA.2019.2923954
https://arxiv.org/abs/1807.08048
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1109/IVS.2016.7535424
https://doi.org/10.1109/IVS.2016.7535424
https://doi.org/10.1109/LRA.2022.3191241
https://elib.dlr.de/124092/
https://elib.dlr.de/124092/
https://doi.org/10.1007/b137116
https://doi.org/10.1073/pnas.1820676116
https://doi.org/10.1109/itsc.2001.948631
https://doi.org/10.1109/itsc.2001.948631
https://doi.org/10.1007/0-387-34239-7
https://doi.org/10.1561/2300000078
https://doi.org/10.1561/2300000078
https://doi.org/10.1109/ROBOT.2010.5509799
https://doi.org/10.48550/ARXIV.2208.11036
https://doi.org/10.48550/ARXIV.2208.11036

	Abstract
	1 Introduction
	2 Framework
	3 Methodology
	3.1 Joint Multi-vehicle Decision-making
	3.2 Parallel Vehicle Trajectory Planning

	4 Experiment
	4.1 Framework Performance
	4.2 Closed-loop Simulation

	5 Conclusions
	References

