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Abstract— Sensor-based environmental perception is a cru-
cial step for autonomous driving systems, for which an accurate
calibration between multiple sensors plays a critical role. For
the calibration of LiDAR and camera, the existing method
is generally to calibrate the intrinsic of the camera first and
then calibrate the extrinsic of the LiDAR and camera. If the
camera’s intrinsic is not calibrated correctly in the first stage, it
is not easy to calibrate the LiDAR-camera extrinsic accurately.
Due to the complex internal structure of the camera and the
lack of an effective quantitative evaluation method for the
camera’s intrinsic calibration, in the actual calibration, the
accuracy of extrinsic parameter calibration is often reduced
due to the tiny error of the camera’s intrinsic parameters.
To this end, we propose a novel target-based joint calibration
method of the camera intrinsic and LiDAR-camera extrinsic
parameters. Firstly, we design a novel calibration board pattern,
adding four circular holes around the checkerboard for locating
the LiDAR pose. Subsequently, a cost function defined under
the reprojection constraints of the checkerboard and circular
holes features is designed to solve the camera’s intrinsic
parameters, distortion factor, and LiDAR-camera extrinsic
parameter. In the end, quantitative and qualitative experiments
are conducted in actual and simulated environments, and
the result shows the proposed method can achieve accuracy
and robust performance. The open-source code is available at
https://github.com/OpenCalib/JointCalib.

I. INTRODUCTION

Autonomous driving has attracted more and more atten-
tion in both industry and academic fields. To ensure that
autonomous driving vehicles can operate appropriately under
dynamic circumstances, multi-sensor cooperation technolo-
gies have appeared, which can provide adequate environ-
mental information, thus contributing to a more reliable
data fusion. Among the numerous types of sensor data
fusion methods, the combination of LiDAR and camera
is one of the most commonly used pairs of sensors for
driving environment perception. LiDARs can provide 3D
point cloud data, which include accurate depth and reflection
intensity information, while cameras capture the rich seman-
tic information of the scene. The combination of camera
and LiDAR provides the feasibility to overcome the flaws
of each sensor. The main challenge in fusing these two
heterogeneous sensors is to find the precise camera’s intrinsic
parameters and the rigid body transformation between sensor
coordinate systems by performing extrinsic calibration [1].
Researchers have made a lot of effort to improve the accuracy
and efficiency of calibration results, such as specific targets
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like checkerboards [2]–[6], spherical target [7], gray code
[8], multi-plane stereo target [9] and semantic objects [10].

Fig. 1: The process of calibrating the camera’s intrinsic
parameters through a pinhole model.

However, existing calibration methods suffer from various
problems. The first issue is the reliability of the cam-
era’s intrinsic parameters because most methods assume the
camera’s intrinsic parameters are known or compute them
through Zhang’s process [11]. The pinhole model is usually
used when calibrating the camera’s intrinsic, but the actual
camera projection process and the pinhole model are not
completely corresponding [12]. The actual camera lens group
is more complex and does not have an absolute optical center
point [13]. As shown in Fig. 1, the camera intrinsic calibra-
tion process is a pinhole model approximation measure. At
the same time, due to the defects of the camera structure and
the uncertainty in the optimization of nonlinear functions,
the obtained solution is usually suboptimal. Consequently,
the accuracy of extrinsic calibration will be affected. Our
experiment of the camera’s intrinsic calibration consistency
also demonstrates the camera’s intrinsic calibration volatility.

Fig. 2: A novel LiDAR-camera calibration board pattern.

In this paper, we present a novel joint calibration method
that overcomes the inaccurate extrinsic calibration of LiDAR
and camera caused by imperfect camera intrinsic parameters.
Unlike existing calibration methods that only estimate the
rotation and transformation between two sensor frames, the
output of the proposed method contains the camera’s intrinsic
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parameters, distortion factor, and LiDAR-camera extrinsic
parameters.

Firstly, as shown in Fig. 2, we design a novel calibration
board pattern, which contains a checkerboard used for the
calibration of the camera’s intrinsic parameters and several
circular holes for locating the LiDAR point cloud. We
first calibrate the camera initial intrinsic and board-camera
initial extrinsic parameter by Zhang’s method [11]. Then, 2D
circles center points on the image are calculated from these
parameters and the calibration board size. By extracting the
position of the circles center in LiDAR, we can project the
circles center 3D points to the image plane by the LiDAR-
camera calibration parameters. The calculated 2D points and
the projected 2D points form multiple 2D point pairs. We use
the euclidean distance between these point pairs to refine the
calibration parameters. At the same time, the constraints on
reprojection of 3D-2D points of checkerboard corners are
added to the optimization process.

The contributions of this work is listed as follows:
1) We design a novel calibration board pattern that not

only constrains the camera’s intrinsic but can also be
used to align LiDAR point clouds and camera images.

2) We propose a target-based joint calibration method
based on our designed calibration board for the camera
intrinsic and LiDAR-camera extrinsic parameters.

3) The joint calibration of the LiDAR-camera is formu-
lated as a nonlinear optimization function by minimiz-
ing the reprojection error between the 3D-2D point
pairs of circles center and checkerboard corners on the
calibration board.

4) The proposed method shows promising performance
on our simulated and real-world data sets; meanwhile,
the related codes have been open-sourced to benefit the
community.

II. RELATED WORK
Researchers have proposed many approaches to address

the intrinsic and extrinsic calibration of multi-model sensor
calibration. Intrinsic calibration estimates the operational
parameters of sensors and is usually performed before per-
forming the extrinsic calibration. Typically, camera intrinsic
calibration focus on estimating focal length, distortion fac-
tor, and skewness. Escalera et al. [14] find both camera’s
intrinsic and extrinsic parameters by detecting corner points
and extracting horizontal and vertical sets of lines from a
checkerboard. Bogdan et al. [15] estimate the focal length
and distortion factor by a learning-based approach, and
three different network architectures are proposed. Jin et al.
[16] calibrate the intrinsic parameters of depth camera with
cuboids, then optimize an objective function based on the
distance error and angle error from reference cuboids. An
et al. [17] apply Charuco board to overcome the deflects of
checkerboard and ArUco board by building a Charuco board-
based cube structure for feature points extraction, which can
be used to estimate perspective projection matrix and solve
the intrinsic parameters. Lopez et al. [18] predict the extrinsic
and intrinsic camera parameters through a single image by

training a convolutional neural network. By contrast, extrin-
sic calibration estimates the rigid body transform between
different sensor frames [19]. According to the requirement
of auxiliary equipment, extrinsic calibration can be divided
into two categories: target-based and target-less procedures.

A. Target-based Method

Target-based extrinsic calibration methods are widely used
in the sensors calibration procedure. Researchers have de-
signed various kinds of calibration targets to meet the char-
acteristics of different sensors. Zhang et al. [20] solve the
extrinsic parameters based on a checkerboard and refine them
by minimizing the re-projection error of laser points to the
checkerboard plane. The method is easy to implement but
cannot obtain the optimal solution directly. Geiger et al. [21]
propose an approach to calibrate LiDAR to the camera by
extracting the corner points from both point cloud and image,
then estimate the rotation and translation by maximizing
the alignments of normal vectors and minimizing point-
to-plane distances respectively. Finally, the fine registration
is performed based on gradient descent. Huang et al. [22]
perform extrinsic calibration by extracting vertices of the
target from point cloud and image plane, and optimize
the result by formulating a Perspective-n-Points problem
which minimizes Euclidean distance of the corresponding
corners. Intersection over Union (IoU) is also used for further
refinement. Zhou et al. [23] find the extrinsic parameters
by computing the correspondences of line features in both
LiDAR and camera frame, and refine the initial solution
through a nonlinear optimization problem.

B. Target-less Method

Target-less method usually takes advantage of natural envi-
ronmental features (such as lines) from the scene, by solving
the geometric constraints, the extrinsic parameters can be
derived. Levinson et al. [24] propose an online extrinsic
calibration method by measuring the edge alignment. Edges
in LiDAR points and image are extracted by depth discon-
tinuity and Inverse Distance Transform (IDT) respectively,
then minimize the re-projection error of 3D LiDAR edge
points to the edge image to obtain the optimal solution. Ma et
al. [25] calibrate the camera to LiDAR extrinsic by extracting
line features in road scenes and registration via extracted
road features. Pandey et al. [26] use the reflection intensity
measured by LIDAR and intensity values from camera and
derive the optimal extrinsic parameters by maximizing a
objective function based on mutual information. Similarly,
Taylor et al. [27] perform LiDAR-camera calibration by
normalizing the mutual information, and maximizing the
gradient correlation of image and LiDAR points. In recent
years, there are some works [28]–[31] that apply deep
learning to sensor calibration tasks, especially adapting to
camera and LiDAR calibration problems.

However, most methods assume that an accurate intrinsic
parameter is given before performing the calibration proce-
dure without paying attention to the problem that the inaccu-
rate intrinsic will lead to inaccurate extrinsic calibration. In



Fig. 3: Overview of the different stages of the presented method. First, target detection is performed, and then the
camera intrinsic parameters and the board-camera extrinsic parameters are calculated by checkerboard to obtain the 3D-2D
corresponding points of LiDAR and camera. Finally, a nonlinear optimization is performed to obtain the final calibration
parameters. The inaccurate initial LiDAR-camera extrinsic parameters can be set by the sensor coordinate correspondence.

contrast, we provide a joint intrinsic and extrinsic calibration
approach that outputs intrinsic and extrinsic parameters at the
same time.

III. METHODOLOGY

This section introduces the details of our approach, includ-
ing calibration target design, calibration target detection, cal-
ibration data collection, and calibration optimization process.
Fig. 3 shows the overview of the presented method.

A. Calibration target design

According to the previous introduction, it is not easy
to accurately calibrate the camera intrinsic parameters in
practice. The calibration goal is to align the LiDAR point
cloud with the camera image through intrinsic and extrinsic
parameters. As long as the alignment accuracy of the point
cloud and image is higher, the calibration’s intrinsic and
extrinsic parameters can be considered more accurate. So
we designed a joint optimization algorithm, and the goal of
joint optimization is to increase the alignment accuracy of
the LiDAR point cloud and image. To this end, we need to
design a novel calibration board that can achieve the joint
optimization of intrinsic and extrinsic parameters.

A well-designed calibration target should satisfy the fol-
lowing properties (i) detectable in all relevant sensors and
(ii) observable features extracted for localization. Based
on the working principles of LiDAR and camera, depth
discontinuous such as edges for point cloud and corners
in the image is most widely used as calibration features
since they can be detected accurately and robustly. As
discussed in [32], circular-shaped targets are more robust
to be detected than rectangular shapes because they can
interact with several LiDAR scans horizontally and vertically
without missing edge information. As shown in Fig. 2,
our design of calibration target combined both geometrical
and visual characteristics, which is suitable for keypoints
detection in LiDAR and camera modalities. We put one black
and white checkerboard in the center, surrounded by four

circular holes. On the one hand, the holes can use geometrical
discontinuities in LiDAR point clouds. On the other hand, the
checkerboard corners can provide spatial constraints. Fig. 2
also shows the details of our calibration target with a specific
size. It is worth mentioning that the calibration board pattern
can also be further modified based on this design to make
data collection more convenient.

B. Calibration target detection

The first step of target-based calibration is to locate the
spatial position of the calibration in each sensor frame.
LiDAR sensor returns the 3D position while camera returns
the colored 2D image of the target. Here we conduct the
extraction procedures of checkerboard and circular holes
separately. There are many existing techniques for detect-
ing the checkerboard from the image, for example, using
popular computer vision libraries. In this work, we choose
OpenCV [33] library for checkerboard detection. As for
LiDAR data, different from the method mentioned in [34],
we locate each center of holes by generating a point cloud
mask PL

mask, which has the same geometric structure as
the calibration target. We assume the original point cloud

Fig. 4: The process of accurately extracting the center of the
circle on the calibration board.

data scanned by a LiDAR sensor is represented as PL
0 .

Firstly, in order to filter outliers and remove the noise of the
surrounding environment, we segment the regions of interest



by presetting detection range. Then the calibration target
plane is segmented from PL

0 through RANSAC plane fitting
with orientation constraints, which is denoted by PL

target.
Afterwards, we follow the grid search method described in
[24] to find the best match of PL

mask and PL
target in LiDAR

coordinate system {L}. Rather than searching on 6-DoF, here
we focus on the yaw angle for rotation and x, y for translation
relative to the calibration board plane.

R∗yaw, t
∗
x,y = arg min

yaw,x,y

∑
(Ryaw(PL

mask + tx,y) ∩ PL
target)

(1)
Fig. 4 illustrates the principle of the matching procedure,
when perfect alignment achieved, least number of points will
fall into the circular holes, and thus the 3D position of each
hole center can be located in {L}. Compared with [34], our
method only requires the coordinate of the 3D point cloud
without using additional intensity and ring id information,
and the generated mask fixes the relative position between
holes, which greatly improves the robustness and accuracy of
center detection. Finally, each calibration board can obtain
the center points of the four circular holes in the LiDAR
coordinate system.

The calibration data collection process is similar to the
camera’s intrinsic calibration data collection. As shown in
Fig. 11, in order to ensure the calibration accuracy, checker-
board corner features and circular hole features need to be
collected in each area of the image. In practical applications,
multiple calibration boards can be placed in different pose
positions simultaneously so that we can perform calibration
by collecting only a frame of data. Compared to the targetless
calibration method, this method guarantees the alignment
of point clouds and pixels in all image regions, ensuring
that the near feature alignment is accurate enough to ensure
far alignment accuracy. This solution is mainly used in the
calibration room or production line calibration. After the
calibration board environment is set and fixed, it can be
used for LiDAR-to-camera intrinsic and extrinsic parameter
calibration of a large number of autonomous vehicles.

C. Joint optimization process

1) Circle Center 2D Points Calculation: For the extracted
LiDAR 3D circles center points, we need to get the corre-
sponding 2D points on the image. We first calibrate the cam-
era intrinsic K, distortion factor and board-camera extrinsic
T(tx, ty, tz, rx, ry, rz) by checkerboard corners. According
to the size of the calibration board, we get the four circles
center points PB={p1b , p2b , · · · , p4b}∈R3 of each calibration
board, where B represents the coordinate system of the
calibration board. The transformed point pi

c is then projected
onto the camera image plane by K and T.

pi
c = K(R(r) · pi

b + t), k = 1, 2, · · · , 4. (2)
where R(r) represents the rotation and can be parameterized
by angle-axis representation r. t represents the translation
with t=(tx, ty, tz)

T . After adding distortion factor, the actual
location of the projected point pi=(ui, vi) is

pi = D(pi
c), (3)

Fig. 5: Collect the point cloud and checkerboard data of the
main area in the image.

D(p) is the camera distortion model. The extracted LiDAR
3D circles center points and the calculated 2d circles center
points form multiple 3D-2D point pairs.

2) Objective: Through the previous process, multiple sets
of 3D-2D point pairs S of the circles center on the calibration
board are obtained. The calibration goal is to align the
LiDAR point cloud with the camera image through intrin-
sic and extrinsic parameters. Therefore, to align the point
cloud with the image, we minimize the following objective
function:

E =
∑
i∈S

||D(K(RLC · pi
3D + tLC))− pi

2D||2 (4)

where RLC , tLC represents the extrinsic parameter from
LiDAR to the camera. p2D are the pixel coordinates of the
center of the circles calculated by the checkerboard before
joint optimization. p3D are the 3D points of the circles in
the LiDAR coordinate system.

3) Constraints: The above minimization is subject to
a set of constraints. While ensuring the alignment of the
LiDAR and the image, the constraints of the checkerboard
on the camera’s intrinsic parameters are also required. the
3D points Pcorners∈R3 of the chessboard corners are in
the coordinate system {B} of the calibration board. For
the camera’s intrinsic parameters, the constraints are listed
below: ∑

(u,v)∝Pcorners

(||u− udet||2 + ||v − vdet||2) = 0 (5)

where (u, v) represents the pixel coordinate point of the
Pcorners projection, (udet, vdet) is the actual detected chess-
board corner pixel point. The rest of the constraints are
that the 2D position of the circles center calculated by
the calibration board size needs to remain invariant during



optimization. The points set bi = [Xi, Yi, 0] are the circles
center in the calibration board coordinate system.∑

i∈S

||D(K(RBC · bi + tBC))− pi
2D||2 = 0 (6)

where RBC , tBC represents the extrinsic parameter from
the calibration board to the camera.

4) Nonlinear Solution: The rotation matrix uses nine vec-
tors to describe the rotation of 3 degrees of freedom, which
is redundancy. Furthermore, the rotation matrix has to be
an orthogonal matrix with determinant 1. These constraints
increase the difficulty of the solution when estimating or
optimizing rotation matrices. A better way to represent the
rotation matrix is using the angle-axis rotation vector. In our
implementation, an inaccurate initial Lidar-camera extrinsic
are provided as initialization, and the calibration optimization
equation is solved by the Ceres solver [35].

IV. EXPERIMENTS
The experiment in this paper consists of two parts: a

realistic experiment on our driverless vehicle test platform
and a simulated experiment based on the Carla engine [36].
The results show that the proposed method is superior to the
state-of-the-art in terms of accuracy and robustness.

A. Realistic Experiment

We conducted experiments on real driverless platforms,
Fig. 6 shows our realistic experiment setup.

Fig. 6: Our sensor suit. Top is Hesai Pandar64 LiDAR. Front
is the camera Balser acA1920-40gc with different FOVs
(FOV = 30◦, FOV = 60◦, FOV = 120◦).

1) Camera Intrinsic Calibration Consistency Evaluation:
Due to the complex internal structure of the camera and
the way of data acquisition, the camera’s intrinsic param-
eters are usually unstable in calibration [12]. On the other
hand, the inaccuracy of the camera’s intrinsic parameters
is because the actual camera projection process and the
pinhole model are not completely corresponding, and the
equivalent camera optical center points at different distances
are different [13]. Barrel distortion usually occurs at short
focal lengths, and pincushion distortion usually occurs at
long focal lengths [37]. To evaluate the camera’s intrinsic
calibration instability, We designed the camera intrinsic
calibration consistency experiment. We used the camera to

collect 6 uniformly distributed checkerboard image groups,
and each group contained 100 frames. Then, we randomly
selected 25 images from each group for the camera’s intrinsic
calibration, performed 100 times per group. We obtained
the residual vector whose statistical information (e.g. mean,
variance) reveals the camera’s intrinsic calibration volatility.
The results are shown in Fig. 7.

Fig. 7: Camera’s intrinsic and distortion parameter calibra-
tion consistency evaluation.

2) Ablation experiment: We designed an ablation ex-
periment to evaluate our method better to split our one-
stage approach into a two-stage process. Then, we respec-
tively compared the 3D-2D reprojection error of the circles
center and checkerboard corners on the calibration board.
We conducted six sets of experiments, each was calibrated
with one-stage and two-stage respectively and compared the
reprojection error of their checkerboard and the circles center.
As shown in Table I, our method has a smaller reprojection
error of the circles center than the two-stage calibration.

TABLE I: Average Reprojection Error for One-stage and
Two-stage Calibration

Checkerboard Corners Circles Center

One-stage 0.757 pixel 1.104 pixel

Two-stage 0.546 pixel 5.428 pixel

3) Qualitative Results: To better visualize the perfor-
mance of our method, the point cloud is projected to the
image plane using the intrinsic and extrinsic parameters
calibrated by our method. Results are shown in Fig. 8. As
shown, using the calibration parameters extracted by the
proposed approach enables a perfect alignment between both
data modalities. Fig. 9 shows the effect of circles center
reprojection on the calibration board.

4) Comparison Experiments: We compared our methods
with [23] and [34], which both use checkerboard as a
calibration target. The first one method [23] estimates the
extrinsic by minimizing the distance from LiDAR points to
the checkerboard plane estimated from the image. The sec-
ond method [34] estimates the extrinsic by ArUco markers
and circles center registration on the calibration board. We
first spent a lot of effort calibrating the camera’s intrinsic
parameter. As shown in Fig. 10, the A and B boxed in the
image show that the distortion effect is good. However, due
to the small error of the camera focal length and optical
center, the parameters calibrated by the method [23] and



Fig. 8: Point cloud projections in four different scenarios,
projection points color is represented by the LiDAR intensity.

Fig. 9: Realistic Experiment: Reprojection of the circles
center on the calibration board. The black circle is the LiDAR
projection point, and the white cross is the calculated image
point.

[34] still cannot align the point cloud and the image in some
places. For this case, our method can adjust the intrinsic
parameters so that the point cloud and the image are perfectly
aligned.

B. Simulated Experiment

We also conducted experiments with our method in the
simulation environment. We can get the ground truth of
the sensor’s calibration in the simulation environment. We
generated three calibration data groups in the Carla engine
[36], We quantitatively compared the mean of LiDAR-
camera extrinsic calibration with the ground truth in Table II.
Fig. 10 also shows the effect of circles center reprojection on
the calibration board. The result shows the proposed method
can achieve accuracy and robustness performance.

TABLE II: Translation and Rotation Quantitative Evaluation.

tx(m) ty(m) tz(m) roll(°) pitch(°) yaw(°)

GT 0 0.595 2.5 −90 0 90

Our −0.001 0.5912 2.5079 −90.002 0.011 90.004

Fig. 10: LiDAR-camera extrinsic calibration by the method
[34]. The small intrinsic error leads to a decrease in the
extrinsic calibration accuracy.

Fig. 11: Simulated Experiment: Reprojection of the circles
center on the calibration board. The black circle is the LiDAR
projection point, and the white cross is the calculated image
point.

V. CONCLUSIONS

This paper proposes a novel target-based calibration
method, joint camera intrinsic and LiDAR-camera extrinsic
calibration. The method can reduce the inaccurate LiDAR-
camera extrinsic calibration caused by incorrect intrinsic
parameters and can be applied in calibration rooms or factory
calibration. Qualitative and quantitative results demonstrate
the performance and effectiveness of our method. The related
codes and data have been open-sourced to benefit the com-
munity. In the real environment, due to the sparsity of the
point cloud, the extraction accuracy of the circle center may
decrease. In the future, we look forward to using the multi-
frame data of vehicle motion to increase the density of the
point cloud, thereby improving the extraction accuracy of the
circle center to improve the calibration performance further.
Additionally, we will explore the detection and calibration
accuracy of different types of LiDARs, such as repetitive
scanning, non-repetitive scanning, sparse, dense, etc.
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