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Abstract
In recent years, research on few-shot learning (FSL) has been fast-growing in the 2D image domain due to the less requirement
for labeled training data and greater generalization for novel classes. However, its application in 3D point cloud data is
relatively under-explored. Not only need to distinguish unseen classes as in the 2D domain, 3D FSL is more challenging
in terms of irregular structures, subtle inter-class differences, and high intra-class variances when trained on a low number
of data. Moreover, different architectures and learning algorithms make it difficult to study the effectiveness of existing
2D FSL algorithms when migrating to the 3D domain. In this work, for the first time, we perform systematic and extensive
investigations of directly applying recent 2D FSLworks to 3D point cloud related backbone networks and thus suggest a strong
learning baseline for few-shot 3D point cloud classification. Furthermore, we propose a new network, Point-cloud Correlation
Interaction (PCIA), with three novel plug-and-play components called Salient-Part Fusion (SPF) module, Self-Channel
Interaction Plus (SCI+) module, and Cross-Instance Fusion Plus (CIF+) module to obtain more representative embeddings
and improve the feature distinction. These modules can be inserted into most FSL algorithms with minor changes and
significantly improve the performance. Experimental results on three benchmark datasets, ModelNet40-FS, ShapeNet70-FS,
and ScanObjectNN-FS, demonstrate that our method achieves state-of-the-art performance for the 3D FSL task.

Keywords Machine learning · Few-shot learning · Meta learning · Point cloud classification

1 Introduction

Deep learning models have achieved promising performance
on various computer vision (CV) and natural language pro-
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cessing (NLP) tasks, with the advent of powerful computing
resources and large-scale annotated datasets. The 3D point
cloud understanding studies with deep learning techniques
are also fast-growing (Qi et al., 2017a, b; Li et al., 2018; Liu
et al., 2019b; Zhang et al., 2022; Cosmo et al., 2022). Unlike
traditional point cloud recognition algorithms (Johnson and
Hebert, 1999; Zhong, 2009; Rusu et al., 2009) that extract
shape features based on the hand-crafted operators, deep-
learning-basedmethods can getmore informative descriptors
for point cloud instances from shape projections (Yu et al.,
2018;Qi et al., 2016; Feng et al., 2018) or rawpoints (Qi et al.,
2017a, b; Liu et al., 2019b; Li et al., 2018;Wang et al., 2019b)
with deep networks, which achieve better performance.

However, deep-learning-based methods have two crucial
issues for point cloud classification. Firstly, the deep-learning
technique usually requires large-scale labeled data to train,
but it is cumbersome and costly to annotate extensive point
cloud data. Secondly, the models trained on base classes
often fail to generalize to novel or unseen classes. To
overcome the data annotation problem, data-augmentation
techniques (Tanner andWong, 1987), semi-supervised learn-
ing (Chapelle et al., 2009), or other learning paradigms (Liao
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et al., 2021) have been introduced to reduce laborious
annotation by efficiently augmenting labeled examples or
reasonably utilizing unlabeled examples. Point-augment (Li
et al., 2020b) is proposedby leveraging an auto-augmentation
framework to address the point cloud classification problem,
which formulates a learnable point augmentation function
using a shape-wise transformation and a point-wise displace-
ment. PointMixup (Chen et al., 2020) is to generate newpoint
cloud examples by assigning optimal paths function to mix
up two objects. However,they may not obtain promising per-
formance in the unseen or novel classes.

On the other hand, we humans can distinguish novel
classes with extremely few labeled examples, which inspires
the research in few-shot learning (FSL) (Snell et al., 2017;
Sung et al., 2018; Garcia and Bruna, 2017; Vinyals et al.,
2016; Ravi and Larochelle, 2017; Finn et al., 2017; Lee
et al., 2019; Li et al., 2020a; Ye et al., 2021; Xu et al.,
2022). The FSL generalizes deep networks to novel classes
with limited annotated data, which has achieved great suc-
cess in 2D image domain. Generally, most current 2D FSL
algorithms adopt metric-based (Snell et al., 2017; Sung
et al., 2018; Garcia and Bruna, 2017; Chen et al., 2021a) or
optimization-based (Ravi and Larochelle, 2017; Finn et al.,
2017; Lee et al., 2019) frameworks to learn transferable
knowledge and propagate them to new tasks, e.g., Relation
Net (Sung et al., 2018) introduces a learnable non-linear dis-
tancemetricmodel to compare query and support images, and
MAML(Finn et al., 2017) is to learn amodel-agnostic param-
eter initialization for quickly fine-tuning with few gradient
update steps. Moreover, the generalized few-shot learning
framework (GFSL) (Ye et al., 2021) and any-shot learn-
ing (Xu et al., 2022) are recently introduced to improve the
models’ generalization ability to novel classeswith few train-
ing images. However, compared to the success of FSL in the
2D image domain, its study in 3Ddata is still relatively under-
explored with the following two challenges.

First, different from 2D images defined in structured grids
with rich texture and appearance information, a point cloud
instance is a group of irregular, unordered, and unstructured
points in 3DEuclidean space (Guo et al., 2020). Such charac-
teristicsmake it challenging to identify the critical local areas
in a point cloud object, increasing the difficulty of extracting
the representative and robust object features. Further, when
the 3D point cloud meets with few-shot scenarios, to what
extent existing point cloud architecture and learning algo-
rithms can perform for 3D FSL is still unknown.

Second, most 2D FSL algorithms can generate more dis-
tinguishing embeddings by pre-training deeper networks on
large-scale based class data (Chen et al., 2019), e.g., tiered-
ImageNet (Ren et al., 2018) contains 608 classes and more
than 800,000 examples in total. By contrast, most 3Ddatasets
contain smaller-scale annotated data, e.g., ModelNet40 (Wu
et al., 2015) only has a total number of 12,311 examples
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Fig. 1 The challenge of few-shot 3D point cloud classification. a Is the
T-SNE on ImageNet (Russakovsky et al., 2015) and ShapeNet (Chang
et al., 2015) using pre-trained 2D image and 3D point cloud features
respectively with the “Mailbox” class highlighted. b Shows the mean
normalized Euclidean distance between each example and its class pro-
totype in the visual and point cloud embedding space, respectively.
The embedding quality of 2D visual domain is much higher than 3D
point cloud domains because image-based pre-trained models, such as
ResNet (He et al., 2016), use deeper networks trained on millions of
images, whereas point cloud-based models, such as PointNet (Qi et al.,
2017a), use shallower networks trained on only a few hundred point
clouds with subtle inter-class differences and high intra-class varia-
tions (Cheraghian et al., 2020)

and 40 classes. Hence the point cloud learning networks
trained on a low number of data may generate poor-quality
3D feature clusters, with subtle inter-class differences and
high intra-class variations, as shown in Fig. 1. Therefore,
how to address these issues requires further exploration.

In this work, for the first time, we systematically study
3D FSL by performing extensive comparison experiments
of certain typical 2D FSL algorithms on different kinds of
point cloud learning architectures, and provide comprehen-
sive benchmarks and a strong baseline for few-shot point
cloud classification. Moreover, we propose a novel method,
Point-cloud Correlation Interaction (PCIA), with three plug-
and-play components called the Salient-Part Fusion (SPF)
module, Self-Channel Interaction Plus (SCI+) module, and
Cross-Instance Fusion Plus (CIF+) module to address the
issues of subtle inter-class differences and high intra-class
variance causing by the limited number of training data. Con-
cretely, the SPF module is designed to generate more repre-
sentative embeddings for unstructured point cloud instances
by fusing local salient-part features. The SCI+ module and
CIF+ module can further improve the feature distinction
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by exploring the self-channel and cross-instances correla-
tions. Extensive experiments on the three newly proposed
3D FSL benchmark datasets, including ModelNet40-FS,
ShapeNet70-FS, and ScanObjectNN-FS, show that our pro-
posed modules can be inserted into certain FSL algorithms
flexibly with minor changes and significantly improve their
performance.

Our key contributions in this work can be briefly summa-
rized as follows:

– We provide systematic and comprehensive benchmarks
and studies for 3D FSL, in terms of the different FSL
learning frameworks and point cloud network architec-
tures. We suggest a strong baseline for the few-shot 3D
point cloud classification task.

– To address the challenges of 3D FSL, we propose three
plug-and-play components, including the Salient-Part
Fusion (SPF) module, Self Channel Interaction Plus
(SCI+) module, and Cross Instance Fusion Plus (CIF+)
module, which can be inserted into certain FSL algo-
rithms with significant performance improvement.

– Our proposed network achieves the state-of-the-art per-
formance on the three newly split benchmark datasets of
3D FSL, including two synthetic datasets, ModelNet40-
FS and ShapeNet70-FS, and a real-world scanning
dataset ScanobjectNN-FS, which improves the perfor-
mance by about 10% for 1-shot and 4% for 5-shot.

Note that this paper is an extended version of our recent
conference paper (Ye et al., 2022). The significant exten-
sions include: (1) constructing an additional benchmark for
few-shot 3D point cloud classification on a real-world scan-
ning dataset ScanobjectNN-FS, and adding several recent
relevant SOTAmethods as comparison baselines [e.g., Point-
BERT (Yu et al., 2021)]; (2) designing a new Salient-Part
Fusion (SPF) module to capture the fine details of a point
cloud object, by fusing local salient-part features (see
Sect. 4.2); (3) proposing a new Self Channel Interaction Plus
(SCI+) module to mine the task-related information, and use
it to enhance the inter-class difference by channel interaction
(see Sect. 4.3); (4) extending theCross-Instance Fusion (CIF)
module with a new branch further exploring the correlation
among different instances, to become a new Cross-Instance
Fusion Plus (CIF+) module (see Sect. 4.4); (5) providing
more extensive experiments (see Sect. 5.2) and deep analy-
ses (see Sects. 5.3–5.5) on model performance, complexity,
robustness, etc.

We organize the rest of the paper as follows. Section 2
formulates the problem definition of 3D FSL and reviews
the related works for 3D point cloud classification and 2D
FSL. Section 3 performs systematic benchmark to inves-
tigate the performance of recent state-of-the-art 2D FSL
algorithms on 3D data with different kinds of point cloud

learning backbones. Section 4 is to introduce our pipeline for
3D FSL and more details about the proposed method. Exten-
sive experiments and discussions are presented in Sect. 5.
Some concluding remarks are finally drawn in Sect. 6.

2 ProblemDefinition and RelatedWork

2.1 Problem Definition

We first define a point cloud instance x with its label y
as (x, y), where x ∈ R

n×3 is an irregular point set con-
taining n points represented with xyz coordinates. In the
customary N -way K -shot Q-query few-shot learning set-
ting (Chen et al., 2019), the aim of FSL algorithms is to
meta-train a predictor which can be generalized to new
unlabeled query examples by few labeled support exam-
ples. We denote the labeled support examples as support set
S = {(xi , yi )}Ns=N×K

i=1 , containing N classes with K exam-
ples for each class, and denote the unlabeled query examples

as query set Q = {(xi , yi )}Nq=N×Q
i=1 , containing the same N

classes with Q examples for each class.
For few-shot point cloud classification,we adopt themeta-

learning paradigm with a set of meta-training episodes T =
{(Si ,Qi )}Ii=1 by optimizing following objectives:

θ∗, φ∗ = argmin
θ,φ

L (T ; θ, φ) , (1)

where T are sampled from the training set and L denotes the
cross-entropy loss function defined as:

L (T ; θ, φ) = ET
[− log p

(
ŷ = c|x)] , (2)

with the prediction p
(
ŷ = c|x) can be given by:

p
(
ŷ = c|x) = so f tmax

(
Cθ

(
Fφ (x)

))
, (3)

where x is the input point cloud instance, ŷ is the predicted
label and c is the ground truth label. The F is the backbone
network parameterized by φ and C is the classifier parame-
terized by θ .

Once meta-training is finished, generalization of the
predictor is evaluated on meta-testing episodes V =
{(S j ,Q j )}Jj=1, which are sampled from the testing set. Note
that we denote the classes in T as base classes and the classes
in V as novel classes. The base classes are disjoint with the
novel classes.

Therefore, there are two crucial challenges in Point Cloud
FSL: (1) how to properly represent the point cloud data
for few-shot learning; (2) how to effectively transfer the
knowledge gained in meta-training episodes to meta-testing
episodes, in the case of subtle inter-class differences and high
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intra-class variance. In the following section, we will review
the recent efforts in 3D point cloud classification and 2D
few-shot learning.

2.2 RelatedWork

2.2.1 3D Point Cloud Classification

Unlike the traditional point cloud recognitionmethods (John-
son and Hebert, 1999; Zhong, 2009), extracting features
based on the hand-crafted operators, deep-learning-based
algorithms can get more informative descriptors for point
cloud instances with deep networks, which has attracted
much attention.Many studies havemade significant progress
in adopting deep networks for point cloud recognition.
According to the fashion of feature extracting from struc-
tured data or unordered points, existing deep-learning-based
algorithms can be divided into two major categories, the
projection-based methods and the point-based methods.

The projection-based methods first convert the irregular
points into structured representations, such as multi-view
images (Su et al., 2015; Yu et al., 2018; Chen et al., 2018),
voxel (Maturana and Scherer, 2015; Riegler et al., 2017),
hash tables (Shao et al., 2018) or lattices (Su et al., 2018; Rao
et al., 2019), and then extract view-wise or structural features
with the typical 2D or 3D CNN networks. VERAM (Chen
et al., 2018) presents a view-enhanced recurrent attention
model to select a sequence of views for 3D classification.
OctNet (Riegler et al., 2017) designs a hybrid grid-octree to
represent point cloud objects, and H-CNN (Shao et al., 2018)
uses hierarchical hash tables and convolutional neural net-
works to facilitate shape analysis. However, these approaches
may encounter the issue of explicit information loss during
the conversion phase or higher memory consumption during
the feature learning phase (Guo et al., 2020).

The point-based methods, in contrast, directly take the
irregular points as input and embed the point cloud object
by exploring the point-wise relationship with deep net-
works. PointNet (Qi et al., 2017a) is the first model to
extract point cloud features using a deep network on raw
points. Furthermore, the following works, such as Point-
Net++ (Qi et al., 2017b), PointCNN (Li et al., 2018),
RSCNN (Liu et al., 2019b), DensePoint (Liu et al., 2019a),
and DGCNN (Wang et al., 2019b),further capture the local
structural or geometric information using convolution-base
networks or graph-based networks for learning more repre-
sentative features. Moreover, RIConv++ (Zhang et al., 2022)
introduces a Rotation-Invariant Convolution by modeling
the internal relationship between the selected points and
their local neighbors to improve feature descriptions. How-
ever, these deep-learning-based methods require large-scale
labeled data to train. The recognition ability of deep networks
depends on the contents of the training data, and hence they

may have a poor generalization of novel classes never seen
before.

Furthermore, recent works (Sharma and Kaul, 2020; Sto-
janov et al., 2021; Yu et al., 2021) attempt to improve
the learning ability of deep networks in 3D point cloud
learning with few labeled training data (Sharma and Kaul,
2020) introduces a self-supervised pre-training method to
obtain point-wise features for few-shot point cloud learn-
ing. LSSB (Stojanov et al., 2021) takes SimpleShot (Wang
et al., 2019a) as the baseline, and improves the low-shot
image classification generalization performance by learn-
ing a discriminative embedding space with 3D object shape
bias. Point-BERT (Yu et al., 2021) proposes to generalize
the Transformers (Vaswani et al., 2017) architecture to 3D
point cloud, and introduces aBERT-style (Devlin et al., 2018)
pre-training technique to pre-train a Transformers-based net-
work with a Mask-Point-Modeling (MPM) task, achieving
the SOTA performance on several downstream tasks (Feng
et al., 2022) is to propose a network for few-shot point cloud
classification by designing a feature supplement module to
enrich the geometric information and using a channel-wise
attentionmodule to aggregate multi-scale features. However,
they calculate the channel-wise attention with points’ feature
directly, which may encounter the issue of larger network
parameters and higher computational consumption. Besides,
the attention mechanism in Feng et al. (2022) only considers
the point-wise relationship in a single sample and neglect the
correlation between different samples.

Different from these works, we provide comprehensive
benchmarks and studies for few-shot point cloud classi-
fication, by systematically reviewing certain typical FSL
algorithms migrating to different 3D point cloud learning
networks. We also propose three effective and light modules
for 3D FSL, including the Salient-Part Fusion (SPF) mod-
ule, the Self-Channel Interaction Plus (SCI+) module and
the Cross-Instance Fusion Plus (CIF+) module, which can
be easily inserted into the most FSL algorithms with signifi-
cant performance improvement.

2.2.2 2D Few-Shot Learning

Recently, research on few-shot learning (FSL) has been
fast-growing in the 2D image domain due to the less
demand for labeled training data and better generaliza-
tion for novel classes. Generally, most 2D FSL algorithms
adopt a meta-learning strategy to learn the transferable
meta-knowledge from base classes to novel classes, roughly
divided into: metric-based approaches and optimization-
based approaches.

The metric-based approaches try to learn a distinguishing
feature space in which examples belonging to the same class
are closer, or design efficient metric functions to measure the
similarity of features. Matching Net (Vinyals et al., 2016)
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designs a bidirectional Long-Shot-Term Memory (LSTM)
module to obtain global contextual embeddings and predicts
the query examples’ label with the Cosine Similarity Dis-
tance. Prototypical Net (Snell et al., 2017) introduces the
concept of class-prototype, which is the mean of the sup-
port features of each class, and uses the Squared Euclidean
Distance to classify query examples, demonstrating better
performance thanMatching Net (Vinyals et al., 2016). More-
over, Relation Net (Sung et al., 2018) and FSLGNN (Garcia
and Bruna, 2017) further propose learnable metric modules
to obtain relation scores or model the instance-wise relation-
ship of labeled support examples and query examples.

On the other hand, the optimization-based approaches
attempt to fast adapt network parameters or optimization
strategies to novel taskswith fewgradient update steps.Meta-
leaner (Ravi and Larochelle, 2017) replaces the stochastic
gradient descent optimizer with an LSTM-based model.
MAML(Finn et al., 2017) tries to learn a transferable parame-
ter initialization that can be fast generalized to new tasks with
few fine-tune steps. MetaOptNet (Lee et al., 2019) meta-
trains a feature-relevant Support-Vector Machine (SVM)
predictor for query examples by incorporating a differen-
tiable quadratic programming solver.

Recently,many efforts have devoted to further promote the
2D FSL. Mangla et al. (2019) proposes the S2M2 to use self-
supervision and regularization techniques to learn relevant
feature manifold for FSL. Doersch et al. (2020) proposes the
CrossTransformers to design a Transformer based network
to find spatially-corresponding between query and support
samples. Chen et al. (2021b) is to introduce Meta-baseline
with a cosinemetric classifierwith learnableweight, showing
better performance than Squared Euclidean Distance. Luo
et al. (2022) proposes SimpleTrans to use a simple transform
function to adjust the weight of different channel to alleviate
the channel bias problem in FSL.

Differently, in this work, we empirically conduct a com-
prehensive study of different 2D FSL approaches migrating
to few-shot point cloud classification tasks, and suggest a
strong baseline for 3D FSL validated on three new splits of
benchmark datasets.

3 Systematic Benchmark

This section introduces three new splits of benchmark
datasets for 3DFSLand systematically studies certain typical
2D FSL methods on these benchmark datasets with differ-
ent typical point-based network backbones. The details of
experimental settings and implementation are described in
Sect. 5.

3.1 Benchmark Datasets for 3D FSL

ModelNet40 (Wu et al., 2015) and ShapeNetCore (Chang
et al., 2015) are two widely used 3D synthetic model bench-
mark datasets for general 3D point cloud classification,
containing 40 and 55 categorieswith a total number of 12,311
and 51,192 objects, respectively. ScanObjectNN (Uy et al.,
2019) is the first real-world point cloud classification dataset
containing 15 categories with 2,902 unique objects in total,
which are selected from the indoor datasets [SceneNN (Uy
et al., 2019) and ScanNet (Dai et al., 2017)].

However, there are two issues in these datasets for 3D
FSL: (1) existing splits of the training set and testing set
contain overlapping classes, which should be disjunctive
in the few-shot setting (Vinyals et al., 2016); (2) the num-
ber of examples in each class is imbalanced. To meet the
FSL setting requirement and evaluate the performance objec-
tively, we introduce new splits of these datasets and construct
three benchmark datasets, ModelNet40-FS, ShapeNet70-FS
and ScanObjectNN-FS, for 3D few-shot point cloud classi-
fication under different scenarios. Statistics of the proposed
benchmark datasets are listed in Table 1.

ModelNet40-FS includes the same 40 classes proposed in
the ModleNet40 (Wu et al., 2015), and we carefully select
30 classes as the base class set for training and the other 10
classes as the novel class set for testing, to ensure that all the
base classes are sufficiently distinct from the novel classes.

ShapeNet70-FS is a larger dataset for 3D FSL. We first
select 48 categories with a sufficient example size (at least
80 examples in a class) from ShapeNetCore (Chang et al.,
2015), and then increase the class number to 70 by splitting
somebroad categories into several fine-grained subcategories
according to the taxonomy offered by Chang et al. (2015).
After that, these are split into 50 base classes for training and
20 novel classes for testing. Note that fine-grained classes
separated from the same super category are all in the training

Table 1 Statistics of the new split benchmark datasets for few-shot
point cloud classification

Bnechmark Datasets for 3D FSL Train Test Total

ModelNet40-FS Classes 30 10 40

Instances 9204 3104 12,308

ShapeNet70-FS Categories 34 14 48

Classes 50 20 70

Instances 21,722 8351 30,073

ScanObjectNN-FS Classes 10 5 15

Instances(S0) 9509 4789 14,298

Instances(S1) 9129 5169 14,298

Instances(S2) 9958 4340 14,298

Si denotes the i split of ScanObjectNN-FS
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set or testing set, ensuring that the test classes are not similar
to those seen during training.

ScanObjectNN-FS is a more challenging dataset for 3D
FSL, because the objects scanned from real-world usually
contain cluttered background noise and large perturba-
tions. There are five variants in ScanObjectNN (Uy et al.,
2019) with different degrees of perturbation. We choose
the most challenging variant, PB_T50_RS, to construct the
ScanObjectNN-FS, which consists of 15 categories with
14,298 perturbed objects in total. We evenly split the object
classes into three non-overlapping subsets, and each split
contains 5 classes.

3.2 Baselines

In terms of the few-shot point cloud classification, we first
study six widely used SOTA 2D FSL methods, including
three metric-based methods and three optimization-based
methods. Here we introduce more adapting details about
these FSL algorithms migrating to 3D point cloud data.

Metric-based methods: following the original setting pro-
posed inPrototypical Net (Snell et al., 2017), we first average
the support features as class prototype features and then take
the Squared Euclidean Distance to classify the query exam-
ples. We train the network end-to-end by minimizing the
cross-entropy loss. Relation Net (Sung et al., 2018) proposes
a learnable relation module to predict the relation score of
support-query pairs. Similar to Sung et al. (2018), we design
a learnable relation module consisting of two convolutional
blocks ((1×1 Convwith 128 filters, BN, ReLU), (1×1 Conv
with one filter, BN, ReLU)) and two Fully-Connection Lay-
ers (128, N) (N is the number of classes at a meta-episode)
and use the Mean Square Error loss to regress relation score
to ground truth. FSLGNN (Garcia and Bruna, 2017) first
introduces a graphical model into 2D FSL, which is eas-
ily extended to variants of frameworks. We construct four
Edge-Conv layers with the setting introduced in Garcia and
Bruna (2017) and adopt theCross-Entropy loss as the optimal
objective.

Optimization-based methods: MAML (Finn et al., 2017)
aims to learn a potential parameter initialization that can be
quickly generalized to novel classeswith few gradient update
steps. We adopt two FC layers (256, N) as the classifier
and update the gradient twice during the meta-training stage.
Meta-learner (Ravi and Larochelle, 2017) proposes to learn
an optimizer for novel examples, which takes two LSTM lay-
ers as ameta-learner to replace the stochastic gradient descent
optimizer.We follow the same settings introduced inRavi and
Larochelle (2017) and design two LSTM layers for gradient
updating. MetaOptNet (Lee et al., 2019) tries to generalize
to novel categories with a linear classifier, by using implicit
differentiation and dual formulation. We use the multi-class

SVM presented in Crammer and Singer (2001) as the classi-
fication head.

3.3 Training and Testing Strategy

We train and test the networkwith the standard episode-based
FSL setting (Chen et al., 2019). Firstly, we train the net-
work from scratch with 80 epochs. Each epoch contains 400
meta-training episodes and 600 validating episodes, which
are sampled from the training set data and validating set data
randomly. Each episode contains N classes with K labeled
support examples and Q query examples for each class,
denoted as the N -way K -shot Q-query setting. Once the
meta-training is ended,we test the networkwith 700 episodes
randomly sampled from the testing set data with the same
N -way K -shot Q-query setting, and report the mean clas-
sification results of the 700 episodes with 95% confidence
intervals. During the testing stage, we also fix the random
seed to ensure that all the methods can be compared fairly.

Specially, we employ the fivefold cross-validation train-
ing strategy for ModelNet40-FS and ShapeNet70-FS, where
we randomly divided the training data into five even sub-
sets. Each subset is used at a time as validation data to select
the best-validation model. Then, we test the best-validation
models and the last-training models on testing data, and take
the better average performance of the five estimations as
the final results. For ScanObjectNN-FS, we perform 3-fold
cross-validation by selecting one split as the testing set and
taking the remaining splits as the training set. Therefore, there
are three different splits of the ScanObjectNN-FS, denoted
as “S0”, “S1”, and “S2”, respectively.

3.4 State-of-the-Art 2D FSL on Point Cloud

Firstly, we investigate the performance of directly apply-
ing widely used SOTA 2D FSL algorithms to the few-shot
point cloud classification task on our newly split benchmark
datasets. Given its simplicity and efficiency, we adopt Point-
Net (Qi et al., 2017a) as the embedding backbone network,
and divide the state-of-the-arts into the following groups:

– Metric-based approaches M: prototypical Net (Snell
et al., 2017), Relation Net (Sung et al., 2018), FSLGNN
(Garcia and Bruna, 2017)

– Optimization-based approaches O: meta-learner (Ravi
and Larochelle, 2017), MAML (Finn et al., 2017),
MetaOptNet (Lee et al., 2019)

We conduct the experiments under a canonical 5-way set-
ting presented in Sect. 5.1. The comparison results of mean
accuracy and complexity, reported in Table 2, show that the
metric-based approaches outperform the optimization-based
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approaches in most few-shot classification settings on 3D
point cloud data.

The reasonmaybe that the optimization-based approaches
are more sensitive to the architecture of neural networks
and need laborious hyper-parameter adjusting to get good
generalization, as discussed in recent research in 2D image
domains (Antoniou et al., 2018). The optimization-based
methods also have lower inference speed because they need
to update the network’s parameters in the inference stage.

Moreover, Prototypical Net (Snell et al., 2017) with Point-
Net (Qi et al., 2017a) as backbone can achieve the top
performance of 65.31, 65.96 and 59.81% respectively for
all datasets, with less computational consumption and high
inference speed. Noted that Prototypical Net (Snell et al.,
2017) and MetaOptNet (Lee et al., 2019) have the same
parameter size, as they share the same backbone network
and use the parameter-free Square Euclidean Distance and
SupportVectorMachine (SVM)as themeta classifier, respec-
tively. However, solving the quadratic programming of SVM
in MetaOptNet (Lee et al., 2019) is very computationally
expensive and time-consuming.

In summary, Prototypical Net (Snell et al., 2017) has a
better trade-off between performance and complexity, but
there is still a large room for further improvement.

3.5 Influence of Backbone Architecture on FSL

We further analyse the influence of different point cloud
backbones on 3D FSL by comparing the vanilla few-shot
classification to Prototypical Net (Snell et al., 2017). We
select three types of state-of-the-art 3D networks including:

– Pointwise-based: PointNet (Qi et al., 2017a) and Point-
Net++ (Qi et al., 2017b).

– Convolution-based: PointCNN (Li et al., 2018), RSCNN
(Liu et al., 2019b) and DensePoint (Liu et al., 2019a).

– Graph-based: DGCNN (Wang et al., 2019b).

For vanilla few-shot classification, we first pre-train these
classification networks (including their backbone and the
classifier head) on base class data without any architecture
change, and then evaluate the classification results on novel
class data by fine-tuning the classifier head with labeled sup-
port samples in each meta-testing episode. Specifically, We
pre-train the networks with their default parameter settings
for 100 epochs on each dataset and fine-tune the classifier
head for 40 epochs.

For Prototypical Net (Snell et al., 2017), we remove the
last classifier layers of these networks and train the backbone
from scratch with the meta-learning paradigm introduced in
Sect. 3.3. Then, embeddings extracted by these backbones
are fed into the Prototypical Net (Snell et al., 2017) for the
few-shot classification.
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Table 3 Comparison results
(accuracy %) of vanilla few-shot
classification (noted as �) and
Prototypical Net (Snell et al.,
2017) (noted as ‡) on three
newly proposed benchmark
datasets with different
backbones

Method ModelNet40-FS ShapeNet70-FS ScanObjectNN-FS

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

�PointNet (Qi et al., 2017a) 60.03 78.25 60.53 77.91 40.00 56.83
‡PointNet (Qi et al., 2017a) 65.31 79.04 65.96 78.77 44.75 59.81
�PointNet++ (Qi et al., 2017b) 61.18 82.31 50.85 79.10 34.30 57.74
‡PointNet++ (Qi et al., 2017b) 64.96 83.66 66.33 80.95 46.83 62.27
�PointCNN (Li et al., 2018) 59.28 74.77 48.94 75.96 29.78 56.68
‡PointCNN (Li et al., 2018) 60.38 76.95 64.02 76.34 46.09 59.11
�RSCNN (Liu et al., 2019b) 61.29 80.06 57.37 77.96 31.88 53.81
‡RSCNN (Liu et al., 2019b) 69.72 84.79 68.66 82.55 48.58 63.89
�DensePoint (Liu et al., 2019a) 57.30 78.06 58.42 79.43 30.10 49.91
‡DensePoint (Liu et al., 2019a) 66.99 82.85 65.81 80.74 43.68 57.36
�DGCNN (Wang et al., 2019b) 63.52 84.00 61.57 81.55 42.46 60.98
‡DGCNN (Wang et al., 2019b) 69.95 85.51 69.03 82.08 46.28 63.94

Improved results are given in bold

Table 3 reports the comparison results of vanilla few-shot
classification (noted as �) and the prototypical Net (Snell
et al., 2017) (noted as ‡). One can clearly obverse that the
DGCNN (Wang et al., 2019b) outperforms other backbone
networks in the vanilla classification setting, illustrating that
the DGCNN (Wang et al., 2019b) has good potential in
feature extraction and generalization. Moreover, the graph-
based network DGCNN (Wang et al., 2019b) also achieves
better performance under most settings in the Prototypical
Net (Snell et al., 2017). The reason can be attributed to the
dynamic update of the point-wise connection graph in the
feature space and the efficient feature extracting in the Edge-
Conv layers. Thus the DGCNN (Wang et al., 2019b) can
obtain more informative features compared with other back-
bone networks.

Besides, the Prototypical Net (Snell et al., 2017) is found
to significantly improve the performance in some settings
and provide higher performance gains for weaker backbones,
for example, 17% for RSCNN (Liu et al., 2019b) and 16%
for PointCNN (Li et al., 2018) under the 5w-1s setting on
ScanObjectNN-FS dataset. Therefore, we use Prototypical
Net (Snell et al., 2017) with DGCNN (Wang et al., 2019b)
as the strong baseline for 3D FSL.

4 Approach

4.1 Overview

Given the baselines in the previous section, 3DFSL still faces
certain challenges: (1) most existing models are developed
under a lab-controlled assumption, where point clouds are
uniformly sampled from the surface of synthetic CAD mod-
els without any perturbation. Actually, point clouds collected
from the real-world environment usually are incomplete and
contain cluttered background points; (2) clusters of 3D fea-

tures tend to have subtle inter-class differences and strong
intra-class variations when the amount of training data is
low; (3) the aforementioned methods independently extract
features from support set and query set, without considering
the correlations between these two sets. Therefore they may
suffer from a huge distribution shift, as demonstrated in Fig.
3a. To address these issues, we create a new and stronger
network, Point-cloud Correlation Interaction (PCIA), for 3D
FSL classification, as illustrated in Fig. 2.

For the first challenge, we propose a novel salient part
fusion (SPF) module to obtain an informative global shape
descriptor for unstructured point cloud instances. Specifi-
cally, the backbone networkFφ takes support setS and query
set Q as input, and embeds each instance x ∈ R

n×3 into
a d-dimension point-wise feature map F pw = Fφ (x) =
{ f ipw} ∈ R

n×d , where i ∈ [1, n]. The feature map F pw

are then fed into the proposed SPF module in Sect. 4.2, to
fuse local salient features to obtain an informative global
shape descriptor f g = SPF

(
F pw

) ∈ R
1×d . After that,

we define the prototype feature for class ci in support set S
as f ip = 1

|K |Σxks ∈Sci SPF
(
Fφ

(
xks

)) ∈ R
1×d as the average

of its K support examples Sci , where Sci = {x1s , x2s , ., xKs },
and the query feature for a query example x j

q as f j
q =

SPF
(
Fφ

(
x j
q

))
∈ R

1×d , where i ∈ [1, N ] and j ∈
[1, Nq ].

However, the first step only separately extracts features
from the support set and query set, yet ignores mitigat-
ing the feature distribution gap by mining the correlation
between these two sets. To address these challenges, our
recent work (Ye et al., 2022) proposed two efficient com-
ponents called Self-Channel Interaction (SCI) module and
Cross-Instance Fusion (CIF) module to update the pro-
totype feature f ip and query feature f j

q by considering
the channel-wise and instance-wise correlation, which can
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Fig. 2 The schematic of our proposedPCIA framework for 3D few-shot
point cloud classification, which consists of three main components for
addressing the challenges in 3D FSL: Salient-Part Fusion (SPF) mod-

ule, Self-Channel Interaction Plus (SCI+) module and Cross-Instance
Fusion Plus (CIF+) module. For clarity, only the 2-way 1-shot 2-query
setting is presented here

Fig. 3 The t-SNE comparisons of feature distribution on the same episode after using different modules. � stands for the support features, •
represents the query features. We use the same color to represent the same class

be easily inserted into different baselines with significant
performance improvement. However, they ignore the local
task-related information offered by the labeled support exam-
ples and the implicit spatial correlation among the input
instances.

Therefore, we newly design a Self-Channel Interaction
Plus (SCI+) module in Sect. 4.3 and a Cross-Instance Fusion
Plus (CIF+)module in Sect. 4.4 to further refine the prototype
feature f ip and query feature by considering the shared and
complementary information among prototypes, after which
more diverse prototype features f ′i

p and query features f ′ j
q

are generated to improve the distribution of features for better
classification, as shown in Fig. 3e.

After that,we takeSquareEuclideanDistancemetric func-
tion as classifier Cθ , and the probability of predicting label
ŷ j for f ′ j

q as class ci is denoted as:

p
(
ŷ j = ci | f ′ j

q

)
=

exp
(
−d

(
f ′ j

q , f ′i
p

))

∑N
i=1 exp

(
−d

(
f ′ j

q , f ′i
p

)) , (4)

where d (., .) is the Square Euclidean Distance, f ′i
p and

f ′ j
q are the updated features generated by the SCI+ and

CIF+module.

In the end, we can get the cross-entropy loss with Eq. (2)
and optimize the network end-to-end by minimizing the fol-
lowing equation:

LCE =− 1

N

1

Nq

N∑

i

Nq∑

j

1
[
y j =ci

]
log

(
p

(
ŷ j = ci | f ′ j

q

))
,

(5)

where N and Nq are the number of class prototypes and query

examples, respectively, y j is the ground truth of f ′ j
q , and 1

denotes the Kronecker delta function.

4.2 Salient-Part Fusion (SPF) Module

Since point cloud instances scanned from real world usu-
ally contain cluttered background and large perturbations,
we propose the Salient-Part Fusion (SPF) module to capture
the fine details, and learn amore informative shape descriptor
for each input point cloud instance by fusing the local salient
part features with its coarse-grained global shape feature, as
illustrated in Fig. 4.
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Fig. 4 An illustration of the Salient-Part Fusion (SPF) module. We
first calculate a salient score for each point’s feature f ipw , i ∈ [1, n]
between the coarse-grained global descriptor f g_coarse by using cosine
similarity. Then we select ks points with the highest salient score and
aggregate their k-nearest neighbors as the local salient part featuresN j ,

j ∈ [1, ks ]. After that, we concatenate the coarse-grained global fea-
ture to each local salient part feature, and adopt a 1 × 1 convolutional
layer g to encode the concatenated features as Fe. Finally, we perform a
channel-wiseMax-pooling function on Fe and obtain the refined global
shape descriptor f g

Considering that points fromdifferent parts contribute dif-
ferently to shape description, we tend to select relevant and
salient parts to enhance the discrimination of shape descrip-
tor embedding. To this end, we first define the coarse-grained
global feature f g−coarse ∈ R

1×d for the point cloud x , by a
channel-wise Max-pooling function performed on F pw:

f g_coarse = Maxpooling
(
F pw

) ∈ R
1×d , (6)

Then, we further define a salient score ai to quantify the
relevance between the i th point’s feature f ipw and the coarse-
grained global feature f g_coarse, which can be calculated as:

ai = M
(
f ipw, f g_coarse

)
, (7)

where M is the cosine similarity metric function and i ∈
[1, n]. Note that the higher ai indicates higher likelihood to
be the salient points of the input point cloud x .

Given the salient scores,we select ks highest salient points,
and for each salient point p j (where j ∈ [1, ks]), we fur-
ther use its k-nearest neighbors’ (k-NNs) features to better
describe its local part information as N j ∈ R

k×d . Next, we
concatenate the coarse-grained global feature f g_coarse to
each local salient part feature N j , and perform a 1 × 1 con-
volution g(·) on the concatenated channels to encode the
concatenated features as f j

e , which is denoted as:

f j
e = g

([ f g_coarse, N j ]
) ∈ R

1×d , (8)

Finally, we obtain the refined global shape descriptor f g , by
performing a channel-wise Max-pooling function on Fe =
{ f j

e } where j ∈ [1, ks], which can be described as:

f g = Maxpooling (Fe) ∈ R
1×d , (9)

4.3 Self-Channel Interaction Plus (SCI+) Module

3D FSL faces the challenge of subtle inter-class differences
when the network is trained on a small number of data that
may contain fine-grained parts. For example, the samples
from the “chair” category can come with distinct handles.
On the other hand, different channels of a point cloud feature
contain various shape structural information. Our previous
work (Ye et al., 2022) attempted to enhance disciminative
parts, by modeling the instance-wise internal structure rela-
tionships with the Self-Channel Interaction (SCI) module.

However, the SCI module only considers the channel
attention within one single prototype and ignores the parts
shared across other prototypes. For example, “chair” and
“stool” can both have samples with similar handles and
cushion structures. In order to increase the network’s discrim-
inability for structural similar objects from different classes,
we hope that such inter-class similar structures could be
weaken so that the inter-class differences becomemore obvi-
ous and easy to be distinguished.

So, to mine these shared information across different pro-
totypes, we propose the Self Channel Interaction Plus (SCI+)
module to elicit structures shared across prototypeswithin the
same task, and then use the attentionmechanism to adjust the
weight of different channel.

In particular, we first design a Meta Learner Gm to gen-
erate the task-aware embedding f ta , to model the shared
context information among f ip. Specifically, the generation
of f ta can be described as:

f ta = Gm([ f 1p, f 2p, ., f Np ]) ∈ R
1×d , (10)

where [ f 1p, f 2p, ., f Np ] ∈ R
1×d×N is the concatenated fea-

ture of the N prototype features, and the Gm is a 1 × 1
Conv layer performing on the third dimension of the con-
catenated feature, to encode the N prototype features into a
d-dimension task-aware embedding f ta .
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Fig. 5 An illustration of the Self-Channel Interaction Plus (SCI+)mod-
ule and the Channel Interaction Block (CIB). (1) Firstly, the Meta
Learner Gm takes in the prototype features and outputs the task-aware
embedding f ta . Then each prototype feature f ip (or query feature f j

q ),
combinedwith the task-aware embedding, is fed into theCIB to generate
the updated features. (2) In theCIB,wefirst concatenate the input feature

(prototype feature f ip or query feature f j
q ) with the task-aware embed-

ding f ta and fuse them with a 1×1 Conv to increase the dimension of
each channel. Then we adopt the self-attention mechanism (Vaswani
et al., 2017) to obtain a Self-Channel Attention Map Rs and use it to
refine the input feature

Then, each prototype feature f ip (or query features f j
q ),

combined with the task-aware embedding f ta , is fed to
the Channel Interaction Block (CIB). We adopt the self-
attention mechanism (Vaswani et al., 2017) in CIB to obtain
a Self-Channel Attention Map Rs , and use it to refine the
input prototype features (or query features) by increasing the
weight of discriminative channels and deducing the weight
of less discriminaive channels containing class-similar infor-
mation.

The right part of Fig. 5 illustrates the process of refining
prototype feature f ip in the CIB, where we first concatenate

the f ip with the task-aware embedding f ta , and then fuse
them using a 1×1 Conv layer to encode each channel into
hr -dimension to get the fusion feature f r :

f r = Conv([ f ip, f ta]) ∈ R
1×d×hr , (11)

where each channel is represented by a hr -dimension vector
that integrates the task-related information.

After that, we slice the f r along the channel dimension d.
For each channel, we generate a query-vector qt ∈ R

1×hr , a
key-vector kt ∈ R

1×hr and a value-vector vt ∈ R
1×hr using

three liner embedding layers, respectively, to extract salient
features in each channel. For efficient computation, we pack
these vectors of different channels together intomatrices Q ∈
R
1×d×hr , K ∈ R

1×d×hr and V ∈ R
1×d×hr , and adopt the

matrix-product to obtain the self-channel attention map Rs :

Rs = QK T

√
hr

∈ R
1×d×d , (12)

and the weighted value-matrix V ′ is:

V ′ = so f tmax(Rs)V ∈ R
1×d×hr . (13)

Finally, we use a 1×1 Conv layer to compress the third
dimension ofV ′ from hr to 1, and reshape it into a 1×d vector
vip. After this we can compensate the discarded information

by combining the refined features vip with f ip, and get the

updated prototype features f ′i
p:

f ′i
p = vip + f ip ∈ R

1×d , (14)

where vip = Conv(V ′) ∈ R
1×d . Similarly, the Eqs. (11)–

(14) are also applied to each query feature f j
q to get the

updated feature f ′ j
q .

After being inserted with the SCI+ module, the network
can learn more fine-grained discriminative features to sep-
arate different classes more obviously, as shown in Fig. 3c.
More visualization analysis of the SCI+module can be found
in Sect. 5.5.

4.4 Cross-Instance Fusion Plus (CIF+) Module

Most existing methods (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018; Garcia and Bruna, 2017) extract sup-
port features and query features independently. As a result,
there often exist feature distribution shift (as shown in Fig.
3a) between support set and query set. Thus, we propose a
simple-but-effective Cross-Instance Fusion (CIF) module in
our previous conference paper (Ye et al., 2022). In this work
we further explore the implicit spatial information and extend
the CIF module by considering the global instance-wise cor-
relation.

Specifically, as illustrated in Fig. 6 (here we only show
the process of updating prototype features, and the update
of query features is similar with the process), there are two
main branches in the newCIFmodulewhere the upper branch
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Fig. 6 An illustration of the Cross-Instance Fusion Plus (CIF+) mod-
ule. The � is element-wise product, ⊕ is element-wise add and ⊗ is
matrix product. There are two main branches in this module. The upper
branch (masked with blue color) fuses the features based on channel-
wise weights, and the lower branch (masked with green color) fuses the
features based on the instance-wise weights. Here we only show the
process of updating prototype features and the update of query features
is similar to this process (Color figure online)

(maskedwith blue color) fuses the featureswith channel-wise
weights, and the lower branch (masked with green color)
fuses the features with the instance-wise weights. Hence, we
termed the new CIF module as CIF Plus (CIF+) module.

In the upper branch, we first concatenate each prototype
feature f ip with its top K1 similar query features based on
the cosine distance, and get Z f ip

:

Z f ip
=

[
f ip, f 〈top1〉

q , ., f 〈topK1〉
q

]
∈ R

1×d×(K1+1), (15)

where [·] is the concatenation operation, d is the number of
feature channels, K1 ≤ Nq , and f 〈top1〉

q represents the query
feature having the highest cosine similarity with prototype
feature f ip.

We then employ two1×1Conv layers in the concatenation
direction to encode the concatenated channels and generate
a weight matrix W f p . After that, we update the prototype
features by using the weighted sum of Z f p withW f p instead
of averaging, which can fuse the channel-wise information
flexibly.

Formally, the weight matrix W f ip
for Z f ip

is denoted as:

W f ip
= f2

(
f1

(
Z f ip

))
∈ R

1×d×(K1+1), (16)

and the fusing feature eipu of the upper branch can be obtained
by adding up the K1 + 1 concatenated features in Z f ip

based

on W f ip
:

eipu =
∑ (

so f tmax
(
W f ip

)
� Z f ip

)
∈ R

1×d (17)

where f1 (·) is the first 1 × 1 Conv layer encoding the Z f ip
into a h-dim feature interaction Z ′

f ip
, and the second 1 ×

1 Conv layer f2 (·) is designed to adjust the dimension of
interaction Z ′

f ip
to generate the weight matrix W f ip

, and �
is the element-wise product.

However, the 1×1 Convolution used in the upper branch
only considers the relation within the concatenated channels,
yet ignores the correlation between other channels. To further
explore the latent spatial information represented by other
channels, we extend the CIF module by adding a new branch
(masked with green color in Fig. 6) that introduces instance-
wise weights to finely adjust the features.

Specifically, we first stack the N prototype features and
the Nq query features into prototype matrix P s ∈ R

N×d and
querymatrix respectively Qs ∈ R

Nq×d , so that we can easily
calculate the cross-instance relation map Mpq of prototype
and query features with matrix-product:

Mpq = P s QT
s ∈ R

N×Nq , (18)

where Nq = N × Q is the number of total query samples in
a meta episode.

Then, we get the fusing features E pl by combining the
query features based on the cross-instance relationmapMpq :

E pl = so f tmax(Mpq)Qs ∈ R
N×d . (19)

Note that, we implement the Eq. (19) by matrix-product for
efficiency, so the matrix E pl needs to be reshaped into N
d-dimension vectors eipl ∈ R

1×d , which is the weighted sum
of query features based on the Mpq .

Finally, we update the prototype feature f ip by adding the
fusing features eipu and eipl :

f ′i
p = f ip + eipu + eipl ∈ R

1×d , (20)

The Eqs.(16)–(20) are similarly applied to the update of
query features with prototype features. As shown in Fig. 3d,
the feature distribution gap of different classes is mitigated
after using the CIF+ module. More visualization analyses of
the CIF+ module are reported in Sect. 5.5.

5 Experiments

This section starts with the details about the newly split
benchmark datasets and experimental settings, and then
reports the comparison results of the SOTA FSL baseline and
our proposed method under different scenarios. After that,
extensive ablation studies, insightful analyses and qualitative
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visualizations are conducted to evaluate the effectiveness of
the proposed modules.

5.1 Implementation Details

We take DGCNN (Wang et al., 2019b) as the backbone net-
work for feature embedding, consisting of four EdgeConv
layers (64, 64, 128, 256) and an MLP encoded layer. The
inputs are a set of meta-tasks containing N = 5 classes with
K = 1 or K = 5 support instances and Q = 15 query instances
for each class, termed the “5-way 1-shot 15-query” or “5-way
5-shot 15-query” setting. We randomly sample 512 points
from the CAD model surface or the scanning object for each
point cloud example. We use the Adam optimizer with an
initial learning rate of 0.0008 and gamma of 0.5. We adopt
the early stop strategy that stops the training when the val-
idation accuracy does not increase in 30 epochs, to reduce
overfitting. The random points jittering and rotating are used
to augment data as in Qi et al. (2017a) during training. Other
details of experimental setups are described in the following
subsections.

5.2 Experimental Results

5.2.1 Results on Synthetic Point Clouds

We first compare our method with the aforementioned FSL
baselines on two synthetic benchmark datasets,ModelNet40-
FS and ShapeNet70-FS. Results reported in the first part of
Table 4 prove that our proposed method outperforms other
baselines onboth datasets by a largemargin, by about 10%for
1-shot and 4% for 5-shot. One possible explanation may be
that the proposed modules can adjust the feature distribution
of the support set and query set by considering channel-
level and instance-level correlation, enhancing the distinction
between prototypes and query instances in the feature space.
Thus the metric-based classifier can better distinguish the
boundaries of different classes.

The second part of Table 4 lists the comparison results
of recent FSL algorithms. For S2M2 (Mangla et al., 2019),
we first pre-train the backbone and classifier head on the
base class data with the auxiliary loss (including rotation
and exemplar) and cross-entropy loss. After that, we use
the support samples to fine-tune the network and predict
the query samples’ class with a cosine classifier. For Meta-
Baseline (Chen et al., 2021b), we train the network from
scratch using meta-leaning paradigm with a learnable cosine
classifier. In SimpleTrans (Luo et al., 2022), we first use the
proposed simple transform function to adjust the feature, and
then feed them in the Prototypical Net (Snell et al., 2017) to
get predictions.

We also compare our proposed method with four recent
3D learning works that explore low labeled training data

problems in the third part of Table 4. In particular, for
the method proposed by Sharma and Kaul (2020), we first
pre-train an embedding network using the self-supervised
strategy introduced in their paper, and then fine-tune the
whole network and classifier with the labeled support exam-
ples. LSSB (Stojanov et al., 2021) proposed to use 3D object
shape bias to improve the generalization performance of
low-shot image classification. To compare with this method,
we follow the same experimental settings in Stojanov
et al. (2021), which first train the Simpleshot (Wang et al.,
2019a) on 3D models’ multi-view RGB projections with
ResNet18 (He et al., 2016) as the backbone, and then refine
the latent embedding space by using 3D object shape bias,
denoted as Simpleshot+SB (Stojanov et al., 2021). For Point-
BERT (Stojanov et al., 2021), we first pre-train the dVAE
model and Transformer encoder on ShapeNet55 (Chang
et al., 2015), and then fine-tune the model to the few-shot
classification task with the same parameter settings adopted
in their paper. To compare with the channel-wise attention
introduced in the Feng et al. (2022), we directly replace
the attention mechanism in the SCI+ module by generat-
ing the Q-K-V vector for each point with three FC layers
and using them to get the attention score. Then we refine
the point-wise feature using this attention score as done in
Feng et al. (2022).

The comparison results reported in Table 4 show that
our proposed network achieves better performance on both
benchmark datasets by about 12% for 1-shot setting and 4%
for 5-shot setting on ModelNet40-FS, and by about 9% for
1-shot setting and 3% for 5-shot setting on ShapeNet70-FS,
respectively.

5.2.2 Results on Real-World Point Clouds

We further compare the performance of different methods
for 3D FSL under a more challenging real-world scenario.
Table 5 summarizes the results of competing methods on the
ScanObjectNN-FS. We can see that the classification per-
formance drops rapidly in the real-world scenario because
the data collected from the real world are noisy and clut-
tered. However, our method also can achieve the top mean
accuracy of 56.24% for 1-shot and 70.93% for 5-shot, outper-
forming most methods on different data splits with different
settings. So our proposed method is indicated to be promis-
ing and effective for 3D few-shot point cloud classification.
Note that we can not compare with Simpleshot (Wang et al.,
2019a) and LSSB (Simpleshot+SB) (Stojanov et al., 2021)
on the ScanObjectNN-FS dataset, because they are image-
based methods and the dataset does not provide multi-view
2D RGB projection images.
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Table 6 Comparisons of the
classification results (accuracy
%) under larger N-way setting
on ShapeNet70-FS with
DGCNN (Wang et al., 2019b) as
the backbone

Method ShapeNet70-FS

10w-1s 10w-5s 15w-1s 15w-5s 20w-1s 20w-5s

Prototypical Net (Snell et al., 2017) 56.08 71.29 49.25 62.20 44.03 58.26

Relation Net (Sung et al., 2018) 53.49 66.14 48.68 58.31 41.55 53.78

MetaOpt (Lee et al., 2019) 55.68 68.33 47.99 60.72 43.30 55.67

Point-BERT (Yu et al., 2021) 59.52 71.33 50.15 65.52 48.33 61.68

Ours 62.57 72.24 54.04 64.46 49.68 60.25

Bold values denote the best results and underline denotes the second-best
N-w-K-s represent the N-way-K-shot setting

Table 7 Ablation study of the
proposed SPF, SCI+ and CIF+
modules with DGCNN (Wang
et al., 2019b) as the backbone

SPF SCI+ CIF+ ModelNet40-FS ShapeNet70-FS ScanObjectNN-FS

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

69.95 85.51 69.03 82.08 46.28 63.94

� 71.89 87.39 69.86 83.28 47.71 67.56

� 72.48 87.86 70.02 83.33 47.13 67.93

� 78.54 87.89 75.65 84.44 53.11 70.20

� � 73.43 88.31 70.53 83.64 48.74 68.28

� � 79.74 88.11 77.93 84.59 55.87 70.53

� � 80.83 88.61 77.64 84.79 55.38 70.35

� � � 81.19 89.30 78.37 85.15 56.24 70.93

Bold values denote the best results
We take Prototypical Net (Snell et al., 2017) as the baseline (the first row), �means equipped with that block

5.2.3 Larger N-Way Classification

To examine the effect of the proposed network under a practi-
cal scenario, we conduct the experiments of the larger N-way
setting (where N = 10, 15, 20) on ShapeNet70-FS with the
backbone network DGCNN (Wang et al., 2019b). As in
Table 6, we compare the metric-based methods Prototypi-
cal Net (Snell et al., 2017) and Relation Net (Sung et al.,
2018), the optimization-based method MetaOptNet (Lee
et al., 2019), and Point-Bert (Yu et al., 2021).

The results show that the performances of these methods
drop significantly when increasing the number of N. But our
approach compares favorably against other methods in most
settings. We attribute the results to that larger N-way classi-
fication needs to further reduce the intra-class variation and
enlarge the inter-class difference, and the proposed SCI+ and
CIF+ modules can address these issues to get better perfor-
mance. Note that, because the Point-BERT (Yu et al., 2021)
is pre-trained on the ShapeNet55 (Chang et al., 2015), it has
better performancewhen fine-tunedwithmore labeled exam-
ples (5-shot), but it may be overfitting when fine-tuning with
one labeled example (1-shot).

Table 8 Complexity analysis of the proposed modules with
DGCNN (Wang et al., 2019b) as the backbone

SPF SCI+ CIF+ 5way-1shot-15query

PN GFLOPs TPS

0.618M 96.88 12.03

� 0.618M 97.00 8.02

� 0.621M 97.25 8.81

� 0.624M 97.09 9.10

� � � 0.627M 97.37 7.49

We take Prototypical Net (Snell et al., 2017) as baseline (the first row),
� means equipped with that block

5.2.4 Complexity Comparisons

To study the complexity and cost of the competing FSLmeth-
ods, we report the parameter number (PN), floating-point
operations (GFLOPs) and the average inference tasks per
second on one NVIDIA 2080Ti GPU for a 5-way 1-shot task
with 15 query examples per class. As shown in the right part
ofTable 4, our proposednetwork introduces a small computa-
tional overhead (about 97.37 GFLOPs) and little parameters
increase (about 0.63M) for the 5-way 1-shot task, corre-
sponding to 0.5GFLOPs and 0.02Mrelative increase over the
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Table 9 Comparisons of the classification results (accuracy%) and improvement, after incorporating the SPF, SCI+ and CIF+modules into different
FSL algorithms with DGCNN (Wang et al., 2019b) as the backbone

Method ModelNet40-FS ShapeNet70-FS ScanObjectNN-FS

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

Prototypical Net (Snell et al., 2017) 69.95 85.51 69.03 82.08 46.28 63.94

Prototypical Net (Snell et al., 2017)+ours 81.19 89.30 78.37 85.15 56.24 70.93

Improvement +11.24 +3.79 +9.34 +3.07 +9.96 +6.99

Relation Net (Sung et al., 2018) 68.57 82.01 67.87 77.99 47.64 58.80

Relation Net (Sung et al., 2018)+ours 75.97 85.45 73.91 83.20 51.40 65.32

Improvement +7.40 +3.44 +6.04 +5.21 +3.76 +6.52

FSLGNN (Garcia and Bruna, 2017) 61.96 80.22 66.25 76.20 28.82 35.32

FSLGNN (Garcia and Bruna, 2017) + ours 65.67 83.57 71.20 80.84 30.32 39.56

Improvement +3.71 +3.35 +4.95 +4.64 +1.50 +4.24

Meta-learner (Ravi and Larochelle, 2017) 59.08 76.99 64.53 74.61 40.52 51.08

Meta-learner (Ravi and Larochelle, 2017) + ours 65.43 79.45 70.14 80.19 43.89 52.23

Improvement +6.35 +2.46 +5.61 +5.58 +3.37 +1.15

MAML (Finn et al., 2017) 62.57 77.41 64.39 74.11 41.95 50.39

MAML (Finn et al., 2017) + ours 66.48 79.38 71.24 77.03 44.34 56.02

Improvement +3.91 +1.97 +6.85 +2.92 +2.39 +5.63

MetaOptNet (Lee et al., 2019) 67.05 85.05 68.27 81.06 50.93 68.07

MetaOptNet (Lee et al., 2019) + ours 76.84 88.13 75.44 84.07 52.62 69.05

Improvement +9.79 +3.08 +7.17 +3.01 +1.69 +0.98

S2M2 (Mangla et al., 2019) 69.73 83.25 68.53 79.71 47.38 62.06

S2M2 (Mangla et al., 2019) + ours 75.35 86.23 73.86 82.37 51.26 68.26

Improvement +5.62 +2.98 +5.33 +2.66 +3.88 +6.20

Meta-Baseline (Chen et al., 2021b) 71.33 85.27 70.16 81.08 49.97 64.83

Meta-Baseline (Chen et al., 2021b) + ours 81.37 88.58 78.88 84.89 6.98 71.12

Improvement +10.04 +3.31 +8.72 +3.81 +7.01 +6.29

SimpleTrans (Luo et al., 2022) 71.44 86.78 69.19 83.37 48.25 68.23

SimpleTrans (Luo et al., 2022)+ours 80.36 87.90 77.92 84.20 55.83 70.30

Improvement +8.92 +1.12 +8.73 +0.83 +7.58 +2.07

Bold values denote the improved results

Prototypical Net (Snell et al., 2017) baseline, which are less
than other baselines.Note that LSSB ( SimpleShot+SB) (Sto-
janov et al., 2021) takes point cloud and image as input, and
it does not provide images on ScanObjectNN-FS, hence we
cannot report its complexity and cost on this dataset. Dur-
ing the testing stage, Point-BERT (Yu et al., 2021) needs
to fine-tune the model, and the speed of inference depends
on the number of retraining epochs, hence we also cannot
report the TPS of Point-BERT precisely. However, the fine-
tuning phase in Point-BERT is time consuming, so its TPS
is much lower than other baselines. The attention used in
the method (Feng et al., 2022) needs to generate the Q-K-
V vector for each point’s feature introducing larger number
of parameters and higher computational cost (about 201.89
GFLOPs).

5.3 Ablative Analysis

In this section, ablative experiments are first conducted to
study the contribution and complexity of each proposedmod-
ule. Then we analyze the effects of applying the proposed
modules to different FSL baselines.

5.3.1 Ablation Studies

We further perform ablation studies to analyze the con-
tribution of each proposed module. We take Prototypical
Net (Snell et al., 2017) with DGCNN (Wang et al., 2019b)
embedding network as the baseline, and incorporate these
modules into the baseline to form different combinations.
Table 7 lists the comparison results, in which we can observe
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that the three proposed components could provide posi-
tive impacts and improve the baseline’s performance on all
datasets. From the perspective of individual modules, the
CIF+ module contributes more than SPF and SCI+ module,
suggesting that exploiting cross-instance relationships can
generate more information for classification than extract-
ing a single instance feature independently. We also can
conclude that the SPF module is more beneficial in the
real-world scenario, which obtains about 4% improvement
on ScanObjectNN-FS, and 1.8 and 1.2% improvement on
ModelNet40-FS and ShapeNet70-FS under the 5-shot set-
ting. By combining these modules, we obtain performance
gains on all datasets, by 1.5–10%. Eventually, the integration
of the three proposed modules yields the best performance,
increasing the accuracy by about 10% for the 1-shot setting
and by 4% for the 5-shot setting, respectively. Moreover, the
comparison results of the SCI+ and CIF+ modules and the
SCI and CIF modules can be referred to the Supplementary
Material.

5.3.2 Component Complexity Analysis

We further analyze the complexity of each proposed mod-
ule when inserted into the baseline network under the 5-way
1-shot 15-query setting. As shown in Table 8, the SPF intro-
duces negligible parameters, and the SCI+ and the CIF+
only increase little parameters (about 0.003M and 0.006M)
and floating-point operations (about 0.37 GFLOPs and 0.49
GFLOPs). However, they also lead to slight inference speed
reduction, about four episodes on average.

5.3.3 Applying the proposed modules to Different FSL
Baselines

Because the proposed models only impact the point cloud
features, they can be easily inserted into the compared FSL
baselines mentioned in the Tabel 4. Therefore, we embed the
proposed modules, SPF, SCI+ and CIF+, into metric-based
and optimization-based FSL baselines to validate their gen-
eralization ability to different networks. Fairly, we take the
DGCNN (Wang et al., 2019b) as the backbone for feature
embedding, and train the networks with the same strategy.
Table 9 reports the improvement of inserting the proposed
modules into different baselines. One can observe that there
is an approximately 1 ∼ 11% consistent increase after inte-
grating with the proposed module, which demonstrates that
proposed modules can be inserted into both metric-based
and optimization-based FSL baselines with significant per-
formance improvement.
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Fig. 7 Comparisons of the classification results with randomly picked
points in a point cloud instance on ModelNet40-FS under the 5-way
1-shot setting

Fig. 8 Confusion matrices of classification results only using
the coarse-grained global representation on the three splits of
ScanObjectNN-FS

5.4 Other Analysis

5.4.1 Impact of Point Cloud Density

To study the robustness of our proposed network and the
FSL baselines with different point cloud densities, we con-
duct the experiments starting with selecting 128 points and
going up to 2048 points for each instance onModelNet40-FS
under the 5-way 1-shot setting. Due to theGPUmemory con-
straint, we take PointNet (Qi et al., 2017a) as the backbone.
Results in Fig. 7 show that the proposed network outper-
forms other baselines by a large margin under different point
cloud density settings. Note that all the baselines have strong
robustness for few-shot point cloud classification, even with
fewer points. Moreover, for most FSL baselines, a larger
number of points only slightly improve the classification
results.
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Table 10 Impact of the SPF
module under different noise
rates on the ScanObjectNN-FS
with DGCNN (Wang et al.,
2019b) as the backbone

Setting Noise rate

0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

5w1s W/o SPF 56.44 55.41 51.44 48.29 43.61

W/SPF 58.61 56.83 52.92 48.69 43.32

Improvement +2.17 +1.42 +1.48 +0.40 −0.29

5w5s W/o SPF 73.76 72.89 67.40 63.11 58.05

W/SPF 76.10 74.48 69.23 64.50 58.66

Improvement +2.34 +1.98 +1.83 +1.39 +0.61

Bold values denote the improved results

Table 11 The comparison
results (accuracy %) of taking
different metric functions as the
meta classifier

Metric ModelNet40-FS ShapeNet70-FS ScanObjectNN-FS

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

Cosine similarity 78.96 87.03 76.31 83.26 51.68 66.78

Euclidean distance 81.19 89.30 78.37 85.15 56.24 70.93

Bold values denote the best results

5.4.2 Impact of Noise Rate on the SPF Module

In the SPF module, salient parts selection relies highly on
the coarse-grained global representations. To quantify the
quality of the coarse-grained global representation, we first
depict the confusion matrices of classification results only
using the coarse-grained global representations on the three
splits of ScanObjectNN-FS in Fig. 8. One can observe that
the coarse-grained global representations also can provide
distinguishing information for different classes, especially
for the 5-shot setting.

Then, we further study the performance of the SPF mod-
ule under different noise rate settings to explore the upper
limit capability against cluttered background interference.
Note that we define the noise rate as the ratio of noisy back-
ground points to total points in one instance. Results listed
in Table 10 indicate that the SPF module can improve the
performance by at least 1.4% for 1-shot and nearly 2% for
5-shot when the noise rate is less than 0.6, showing good
resistance capability of the SPF module to marginal noise
and background interference. However, when the noise rate
is higher than 0.6, the SPF module only obtains marginal
improvement or even impairs the accuracy for 1-shot. We
attribute the results to that a large number of noisy points
adversely impact the discrimination of global representa-
tions, and noisy backgrounds may also be considered as the
potential salient parts, which limits the efficacy of the SPF
module.

5.4.3 Impact of Global Feature on the SPF Module

This section investigates the impact of information loss when
discarding the non-salient feature points, by removing the

global feature in Eq. (8) and simply generating the output
feature using only salient parts. Table 12 reports the results
on ModelNet40-FS and ScanObjectNN-FS datasets. We can
observe that, without the global feature, the performance
drops slightly on ModelNet40-FS dataset while more on
ScanObjectNN-FS datasets.

5.4.4 Impact of Different Data Augmentations

This section studies the impact of different data augmenta-
tions when they are used to train the proposed method. Here
we compare to other two data augmentations techniques,
Point-Mixup (Chen et al., 2020) andPoint-Augment (Li et al.,
2020b). Note that we only augment the data during the train-
ing and validating stages using the methods proposed in their
paper. Table 13 lists the few-shot classification results on
ScanObjectNN-FS dataset. One can obverse that the pro-
posed method can work well with different augmentation
methods, which have a consistent performance improvement
of about 2% compared with that without augmentation. Spe-
cially, the proposed model achieves 56.80% accuracy in the
1-shot setting if equipped with Point-Augment (Li et al.,
2020b), exceeding the performance of jittering and rotating
methods.

5.4.5 Impact of Different Classifiers

Here we conduct ablative experiments to study the impact
of different classification metric functions for few-shot point
cloud classification. Table 11 shows the comparison results
of using squared Euclidean distance and cosine similarity as
classifier Cθ . We improve the cosine similarity Classifier for
a fair comparison by adding a learnable scaling parameter τ .
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Table 12 Ablation results of
removing the global features,
where last row denotes the
performance drop on different
datasets under different settings
after discarding global features

Method ModelNet40-FS ScanObjectNN-FS

5w-1s 5w-5s 5w-1s 5w-5s

W/global feature (ours) 56.24 70.93 81.19 89.30

Wo/global feature 55.91 70.91 80.42 88.98

Performance drop −0.33 −0.02 −0.77 −0.32

Bold values denote the best results

Table 13 Comparison of different data augmentation methods
when applied on the proposed few-shot classification framework on
ScanObjectNN-FS

Method ScanObjectNN-FS

5w-1s 5w-5s

No Data-Augment 54.99 68.08

Data-Augment (Ours) 56.24 70.93

Point-Mixup (Chen et al., 2020) 55.82 70.17

Point-Augment (Li et al., 2020b) 56.80 70.32

Bold values denote the best results

We can observe that the squared Euclidean distance outper-
forms the cosine similarity by about 2%on all the datasets, so
we adopt squared Euclidean distance as the few-shot classi-

fication metric for our network. A possible reason is that the
squared Euclidean distance is a Bregman divergence, which
is suitable for taking the average under point cloud scenario
as analyzed by Snell et al. (2017).

5.5 Visualization Analysis

5.5.1 The t-SNE Visualization

We use t-SNE (Van der Maaten and Hinton, 2008) to visual-
ize feature distribution under the 5way-5shot-15query setting
on ShapeNet70-FS with DGCNN (Wang et al., 2019b) as the
backbone network. The results are shown in Fig. 3, where
(a) corresponds to the features of the Prototypical Net (Snell
et al., 2017) baseline, achieving an accuracy of 76.38%, and
(b)–(d) are the results of Prototypical Net (Snell et al., 2017)

Fig. 9 The learned feature space is visualized as a distance from the
RED point to the rest of points (White: near, Blue: far). For clear visual-
ization, we color the the attached noisy background as Gray points. For
each sub-figure, Left: Euclidean distance in the input R3 space, Right:

Distance in the learned feature space of our methodwith DGCNN as the
backbone. The semantically similar structures such as lampshade of a
lamp, shelves of a bookshelf, back of a chair are brought close together
in the feature space (Color figure online)

123



792 International Journal of Computer Vision (2023) 131:772–795

Fig. 10 Visualization of Salient Parts in the SPF module. Red (better zoom-in to view): the top ks selected salient points, Blue: the k-NN points,
Gray: the attached background points (Color figure online)

Fig. 11 The feature response heatmap of point cloud instances before and after using SCI+ and CIF+ modules. Darker color represents more
intensive feature response in this region (Color figure online)

incorporating the SPF, SCI+, and CIF, achieving 77.53%,
78.38%, and 79.30% respectively, and (e) incorporates both
SPF, SCI+ and CIF+ modules, obtaining better performance
of 80.03%. Note that the learning support and query fea-
tures of Prototypical Net (Snell et al., 2017) are dispersed
with huge distribution shifts. After equipping the proposed
modules, the features tend to move to the center to better
differentiate from other classes, and the distribution shift
between support and query sets is mitigated. More t-SNE
visualization results can be referred to in Supplementary
Material.

5.5.2 Visualization of Feature Space

To qualitatively analyze the feature space trained on a few
labeled examples, in Fig. 9, we visualize the learned fea-
ture space output from the backbone network as a distance
from the RED point to the rest of the points (White: near,
Blue: far), as done in work (Sharma and Kaul, 2020). The
gray points in the last row represent the attached noisy back-
ground. For each sub-figure, Left: Euclidean distance in the
inputR3 space,Right: distance in the learned feature space of
our method with DGCNN as the backbone. One can clearly

observe that semantically similar structures such as the lamp-
shade of a lamp, shelves of a bookshelf, and back of a chair,
indicating that the proposed modules can help the backbone
to learn a latent feature space in which more discriminative
semantic and part information can be captured, althoughwith
few labeled training examples.

5.5.3 Visualization of Salient Parts in the SPF Module

We visualize the salient parts selected by SPF module in
Fig. 10. Red points (better zoom-in to view on the com-
puter) represent the salient points and Blue points are their
k-NNs denoted as the local salient parts. Gray points are the
noisy background. We show the results of ScanObjectNN-
FS instances scanned from the real world. One can observe
that the proposed model intends to select the points that are
more likely to fall on the foreground object and far away
from the edges or corners that usually contain background
noisy points, indicating that the SPF module could fuse local
salient partsmore relevant to the shape description to enhance
the discrimination of shape embedding, while reducing the
influences from the noisy background.

123



International Journal of Computer Vision (2023) 131:772–795 793

5.5.4 Visualization of Feature Heatmap of SCI+ and CIF+
Module

We further visualize the feature response heatmap of the
SCI+ and the CIF+ module for qualitative evaluation, by
selecting the activated points after the MaxPooling layer and
mapping their features into color intensity. The comparison
results shown in Fig. 11 depict the change before and after
incorporating the SCI+ and CIF+ module. Note that darker
color represents a more intensive feature response in this
region. We can observe that the SCI+ module pays closer
attention to the critical parts of two fine-grained objects, such
as thewing and the tail of these two kinds of airplanes, and the
leg of different chairs, see Fig. 11b. While the CIF+ module
focuses on more diverse regions, like the head of airplanes
and the backrest of chairs, see Fig. 11c.We can conclude that
incorporating the two proposed modules can help to gener-
atemore informative features by fusing refined structures and
regions, see Fig. 11d.

6 Conclusion

In thiswork,we take a closer look at the 3DFSLproblemwith
extensive experiments and analyses, and design a stronger
algorithm for the few-shot point cloud classification task.
Concretely, we first empirically study the performance of
recent 2D FSL algorithms when migrating to the 3D domain
with different kinds of point cloud backbone networks, and
thus construct three comprehensive benchmarks and suggest
a strong baseline for few-shot 3D point cloud classification.
Furthermore, to address the subtle inter-class differences
and high intra-class variance issues, we come up with a
new network, Point-cloud Correlation Interaction (PCIA),
with three plug-and-play modules, namely the Salient-Part
Fusion (SPF) Module , the Self-Channel Interaction Plus
(SCI+) Module, and the Cross-Instance Fusion Plus (CIF+)
Module. These modules can be easily inserted into different
FSL algorithms with significant performance improvement
for 3D FSL. We validate the proposed network on three
3D FSL benchmark datasets, including ModelNet40-FS,
ShapeNet70-FS and ScanObjectNN-FS, on which our net-
work achieves the state-of-the-art performance.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01731-
4.
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