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Abstract

Unsupervised Domain Adaptation (UDA) technique has
been explored in 3D cross-domain tasks recently. Though
preliminary progress has been made, the performance gap
between the UDA-based 3D model and the supervised
one trained with fully annotated target domain is still
large. This motivates us to consider selecting partial-yet-
important target data and labeling them at a minimum cost,
to achieve a good trade-off between high performance and
low annotation cost. To this end, we propose a Bi-domain
active learning approach, namely Bi3D, to solve the cross-
domain 3D object detection task. The Bi3D first develops a
domainness-aware source sampling strategy, which identi-
fies target-domain-like samples from the source domain to
avoid the model being interfered by irrelevant source data.
Then a diversity-based target sampling strategy is devel-
oped, which selects the most informative subset of target do-
main to improve the model adaptability to the target domain
using as little annotation budget as possible. Experiments
are conducted on typical cross-domain adaptation scenar-
ios including cross-LiDAR-beam, cross-country, and cross-
sensor, where Bi3D achieves a promising target-domain de-
tection accuracy (89.63% on KITTI) compared with UDA-
based work (84.29%), even surpassing the detector trained
on the full set of the labeled target domain (88.98%). Our
code is available at: https://github.com/PJLab-
ADG/3DTrans.

1. Introduction
LiDAR-based 3D Object Detection (3DOD) [5, 13, 26,

28, 41] has advanced a lot recently. However, the gen-
eralization of a well-trained 3DOD model from a source
point cloud dataset (domain) to another one, namely cross-
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Figure 1. Comparisons among (a) The general 3DOD pipeline,
(b) Self-training based Unsupervised Domain Adaptation 3DOD
pipeline, and (c) Active Domain Adaptation 3DOD pipeline that
selects representative target data, and then annotates them by an
oracle (human expert) for subsequent model refinement.

domain 3DOD, is still under-explored. Such a task in fact
is important in many real-world applications. For example,
in the autonomous driving scenario, the target scene distri-
bution frequently changes due to unforeseen differences in
dynamically changing environments, making cross-domain
3DOD an urgent problem to be resolved.

Benefiting from the success of Unsupervised Domain
Adaptation (UDA) technique in 2D cross-domain tasks [3,
7,10,14,32,46,49], several attempts are made to apply UDA
for tackling 3D cross-domain tasks [15,20,22,37,40,43,47].
ST3D [43] designs a self-training-based framework to adapt
a pre-trained detector from the source domain to a new tar-
get domain. LiDAR distillation [37] exploits transferable
knowledge learned from high-beam LiDAR data to the low
one. Although these UDA 3D models have achieved sig-
nificant performance gains for the cross-domain task, there
is still a large performance gap between these UDA models
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and the supervised ones trained using a fully-annotated tar-
get domain. For example, ST3D [43] only achieves 72.94%
AP3D in nuScenes [1]-to-KITTI [8] cross-domain setting,
yet the fully-supervised result using the same baseline de-
tector can reach to 82.50% AP3D on KITTI.

To further reduce the detection performance gap between
UDA-based 3D models and the fully-supervised ones, an
initial attempt is to leverage Active Domain Adaptation
(ADA) technique [6, 17, 29, 38, 39], whose goal is to se-
lect a subset quota of all unlabeled samples from the target
domain to perform the manual annotation for model train-
ing. Actually, the ADA task has been explored in 2D vi-
sion fields such as AADA [29], TQS [6], and CLUE [17],
but its research on 3D point cloud data still remains blank.
In order to verify the versatility of 2D image-based ADA
methods towards 3D point cloud, we conduct extensive at-
tempts by integrating the recently proposed ADA methods,
e.g., TQS [6] and CLUE [17], into several typical 3D base-
line detectors, e.g., PV-RCNN [26] and Voxel R-CNN [5].
Results show that these 2D ADA methods cannot obtain sat-
isfactory detection accuracy under the 3D scene’s domain
discrepancies. For example, PV-RCNN coupled with TQS
only achieves 75.40% AP3D, which largely falls behind the
fully-supervised result 82.50% AP3D.

As a result, directly selecting a subset of given 3D
frames using 2D ADA methods to tackle 3D scene’s do-
main discrepancies is challenging, which can be attributed
to the following reasons. (1) The sparsity of the 3D point
clouds leads to huge inter-domain discrepancies that harm
the discriminability of domain-related features. (2) The
intra-domain feature variations are widespread within the
source domain, which enlarges the differentiation between
the selected target domain samples and the entire source do-
main samples, bringing negative transfer to the model adap-
tation on the target domain.

To this end, we propose a Bi-domain active learning
(Bi3D) framework to conduct the active learning for the
3D point clouds. To tackle the problem of sparsity, we
design a foreground region-aware discriminator, which ex-
ploits an RPN-based attention enhancement to derive a
foreground-related domainness metric, that can be regarded
as an important proxy for active sampling strategy. To
address the problem of intra-domain feature variations
within the source domain, we conceive a Bi-domain sam-
pling approach, where Bi-domain means that data from both
source and target domains are picked up for safe and robust
model adaptation. Specifically, the Bi3D is composed of a
domainness-aware source sampling strategy and a diversity-
based target sampling strategy. The source sampling strat-
egy aims to select target-domain-like samples from the
source domain, by judging the corresponding domainness
score of each given source sample. Then, the target sam-
pling strategy is utilized to select diverse but representative

data from the target domain by dynamically maintaining a
similarity bank. Finally, we employ the sampled data from
both domains to adapt the source pre-trained detector on a
new target domain at a low annotation cost.

The main contributions can be summarized as follows:
1. From a new perspective of chasing high performance

at a low cost, we explore the possibilities of leverag-
ing active learning to achieve effective 3D scene-level
cross-domain object detection.

2. A Bi-domain active sampling approach is proposed,
consisting of a domainness-aware source sampling
strategy and a diversity-based target sampling strat-
egy to identify the most informative samples from both
source and target domains, boosting the model’s adap-
tation performance.

3. Experiments show that Bi3D outperforms state-of-the-
art UDA works with only 1% target annotation bud-
get for cross-domain 3DOD. Moreover, Bi3D achieves
89.63% APBEV in the nuScenes-to-KITTI scenario,
surpassing the fully supervised result (88.98% APBEV)
on the KITTI dataset.

2. Related Works
2.1. LiDAR-based General and UDA 3D Detection

LiDAR-based 3D object detection [2,5,13,18,26–28,41,
42, 44, 48] has attracted increasing attention in real applica-
tions such as autonomous driving and robotics. Grid-based
methods [5, 41] convert disordered point cloud data to reg-
ular grids and extract features by 2D/3D convolution. In-
spired by PointNet [19], Point-based approaches [27, 44]
use set abstraction to extract features and directly gener-
ate proposals from point cloud data. However, these gen-
eral 3D detectors still face serious performance drops in
cross-domain applications, e.g., from Waymo or nuScenes
to KITTI adaptation scenarios. UDA 3D object detection
tackles the cross-domain distribution shift issue by vari-
ous unsupervised methods. ST3D [43] proposes to use
self-training and curriculum data augmentation to generate
pseudo labels on a target domain to mitigate the large do-
main gap. LiDAR Distillation [37] proposes a distillation-
based method, focusing on the knowledge transfer from
high-beam data to low-beam data. However, there is still
a large detection accuracy gap between these UDA meth-
ods [37, 43] and fully-supervised 3D detectors [26, 28, 41].

2.2. Active Domain Adaptation

Inspired by active learning methods [4,11,23–25,34,35,
45] which aim to achieve relatively high recognition accu-
racies only using a small portion of informative data, Active
Domain Adaptation (ADA) [6, 16, 17, 29, 38] has emerged
in 2D vision task, which selects the most informative tar-
get data for annotation and adapts the model to the target
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domain by training on the selected data. CLUE [17] pro-
poses to use an uncertainty-weighted clustering strategy to
select informative target data. TQS [6] utilizes a hierar-
chical sampling strategy that performs active learning from
multi-grained criteria such as transferable committee, trans-
ferable uncertainty, and transferable domainness.

Although the ADA technique has achieved great success
in 2D image tasks, its exploration of 3D point cloud tasks
is still insufficient. Furthermore, it is intractable to directly
apply these 2D ADA methods to the 3D point cloud sce-
narios, since these 2D ADA works [6, 16, 17, 29] are not
intended to tackle the distribution difference of point clouds
with various spatial and geometric structures. Besides, pre-
vious ADA methods focus more on how to select samples
from the target domain, ignoring that the source domain
may contain many diverse samples and not all of them are
beneficial for model adaptation to the target domain. In con-
trast, our Bi3D provides a new angle of view for achiev-
ing cross-domain generalization: a Bi-domain active learn-
ing strategy, which samples informative frames from both
source and target domains.

3. Method
The overall Bi3D framework is shown in Fig. 2. To bet-

ter illustrate the Bi3D principle, we first describe our prob-
lem definition and the selected baseline model. Next, we
introduce the proposed Bi3D. Finally, we give the overall
objectives and Bi-domain sampling and training strategies.

3.1. Preliminary
Problem Definition. Given a labeled source domain set
Ds = {(xs

i , y
s
i )}ns

i=1, an unlabeled target domain set Dt =

{xt
j}nt

j=1, and an annotation budget B, where B � nt and
nt denotes the total amount of target domain data. Follow-
ing the standard ADA setting, a labeled target dataset D̃t

is constructed, which is initially empty and will be updated
in R rounds of the sampling process. In the k-th sampling
round where k ≤ R, a subset ∆Dk

t is selected from Dt/D̃t

and labeled by an oracle (human expert). Then, D̃t will be
updated as D̃t ← D̃t ∪ ∆Dk

t . After R rounds of sampling,
the number of data in D̃t reaches the upper limit of anno-
tation budget B, i.e., |D̃t| = B. Note that different from
previous ADA methods, in this work, we further construct
a source subset D̃s sampled from the original source do-
main Ds. The goal of the proposed Bi3D is to select both
target-domain-like data from Ds and the most informative
data from Dt, to constitute D̃s and D̃t, and make the 3D
detector better adapt to target domain by jointly training on
a mixture set from D̃s and D̃t.
Baseline Introduction. Following previous cross-domain
studies [37, 43] for 3DOD, we use PV-RCNN [26] as our
baseline model. PV-RCNN is a typical two-stage 3D de-
tection framework that takes advantage of both the point-
based network and 3D voxel-based CNN. The overall loss

function of PV-RCNN can be written as follows:

Ldet = Lrpn + Lrcnn + Lseg (1)

where Lrpn denotes the loss of Region Proposal Network
(RPN), Lrcnn represents the proposal refinement loss and
Lseg is the keypoint segmentation loss.

3.2. Bi3D: Bi-domain Active Learning for 3D Object
Detection

To effectively measure the domainness of source and
target samples, we first design a foreground region-aware
discriminator. Then, based on the domain discriminator,
we propose a Bi-domain sampling strategy to adapt a pre-
trained 3D detector from its source domain to a new target
domain.
Foreground Region-aware Discriminator. Considering
that instance-level features lose the contextual relationship
between the instance and its original scene, and meanwhile,
a large number of negative anchors will greatly hinder do-
main discriminator learning, we thus generate scene-level
representations by extracting from Bird-Eye-View (BEV)
features. However, the BEV features extracted using 3D
convolution are very sparse due to the sparse distribution of
point cloud data, causing the traditional discriminator diffi-
cult to localize and learn on informative foreground regions,
thus resulting in a biased domain representation learning.

To address this issue, we design a foreground region-
aware discriminator, aiming at measuring the frame-level
domainness score for both the source and target data by en-
hancing foreground-region features in the scene. Specifi-
cally, let xd

i denote the input point cloud data, where d ∈
[s, t] means that the sample x is from source domain s or
target domain t. Next, the 3D feature volumes are first en-
coded by the 3D backbone F3D and then converted into 2D
BEV features fbev ∈ RC×H×W , where C denotes the chan-
nel number, H and W are the height and width of the fea-
ture, respectively.

To make the domain discriminator pay more attention
to foreground regions, we first obtain the objectness score
Sobj ∈ RC′×H×W by the RPN operation, where C′ indi-
cates the number of anchors per location. The objectness
score represents the probability that a default anchor be-
longs to a foreground object. In order to quantitatively eval-
uate the prediction uncertainty of the detector for the cur-
rent scene, inspired by previous methods [6,9,21] using en-
tropy to measure uncertainty, we calculate the entropy score
Sent ∈ RC′×H×W with the following formula:

Sent = −Sobj log Sobj − (1− Sobj) log(1− Sobj), (2)

where Sent denotes the uncertainty of a spatial location be-
ing classified as an instance object. Based on Eq. 2, a scene-
level attention map can be obtained by combining Sobj and

3
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Figure 2. The overview of the proposed Bi3D, which employs PV-RCNN as our baseline and consists of domainness-aware source sampling
strategy and diversity-based target sampling strategy. The target-domain-like source data are first selected by the learned domainness score,
and then the detector is fine-tuned on the selected source domain data. Next, diverse and representative target data are selected using a
similarity bank, and then annotated by an oracle. Finally, the detector is fine-tuned on both the selected source and target data.

Sent, which can make the model pay more attention to fore-
ground features. Thus, the foreground region-aware fea-
tures can be calculated as follows:

f̂bev = (1 + (Ŝobj + Ŝent)/2) fbev, (3)

where f̂bev represents the foreground region-aware BEV
features, and Ŝobj and Ŝent are the maximum value of Sobj

and Sent along the channel dimension, respectively.
Based on the foreground region-aware feature maps f̂bev,

a domain discriminator with a convolution block is utilized
to classify whether the data is from the source domain or
target domain. For a detailed structure of the discriminator,
please refer to our supplementary material. The loss func-
tion of the domain discriminator can be written as follows:

Ldom =− Exs∼Ds [log(1−H(f̂sbev)]

− Ext∼Dt
[log(H(f̂ tbev)],

(4)

where Ldom is the domainness loss, and H denotes the do-
main discriminator, where we label the source domain and
the target domain as ’0’ and ’1’, respectively.
Domainness-aware Source Sampling Strategy. Previous
DA works mainly focus on how to fully exploit represen-
tative data from the target domain, which actually ignores
that there are a certain number of source samples interfer-
ing with the target domain representation learning. Thus,
we propose a simple but effective domainness-aware source
sampling strategy, aiming at selecting target-domain-like
samples from the source domain to initially strengthen the
model adaptability. In particular, we first calculate scene-
level domainness score ssi of all source data using the afore-
mentioned domain discriminator, where ssi = H(f̂sbev) and

ssi can be regarded as a similarity metric between source
data and target data. ssi with a relatively high value indi-
cates that the i-th frame data from the source domain com-
plies with the data distribution of the target domain. To
select the source data with a high domainness score, we
simply sort ssi in descending order, thus D̃s can be built
by sampling the sorted data with a proportion or thresh-
old. Please refer to our supplementary material for the study
of the number of selected source data. Note that there is
a smaller domain gap between D̃s and Dt and therefore
by fine-tuning the detector on D̃s, the performance of the
model on the target domain will be improved. As a result,
the detector can extract more accurate instance-level fea-
tures, benefiting to select more informative target data.

Diversity-based Target Sampling Strategy. To make the
detector better adapt to the target domain, we first fine-tune
the detector on D̃s, and select representative data from the
target domain. However, since the adjacent frames in scenes
like autonomous driving are usually similar, traditional
active learning methods (e.g., Query-by-Committee [23],
Query-by-Uncertainty [34]) encounter a major challenge
that they often select the samples with a small between-class
difference, causing redundant frame annotation operations.
Thus, we design a diversity-based target sampling strategy
to select diverse-and-representative target domain data.

Given ROI features Ij = [I1j , I
2
j , ..., I

k
j ] from the j-th

target frame, the corresponding confidence scores dj =

[d1j , d
2
j , ..., d

k
j ] can be easily obtained by the baseline detec-

tor with the standard post-processing process, i.e., Non-
Maximum Suppression (NMS). We first use confidence
scores to re-weight all ROI instance-level features to ob-
tain more accurate instance descriptions Îj in the current

4



Algorithm 1 Diversity-based Target Sampling Strategy

Input: The j-th unlabeled frame xtj , where xtj ∈ Dt/D̃t,
and the k-th round of sampling budget bk

Output: The selected target set ∆Dk
t

1: Calculate the re-weighted ROI features Îj with the ob-
tained domainness score stj from the unlabeled frame
xtj , by stj = H(f̂ tbev).

2: Initialize the similarity bank P := ∅ and budget proto-
types c := ∅

3: for xtj in Dt/D̃t do
4: if |∆Dk

t | < bk then
5: Update P := P ∪ xtj , c := c ∪ Îj
6: else
7: Calculate the similarity αÎj ,c

between Îj and c
8: Calculate the similarity αc of prototypes in c
9: if max(αÎj ,c

) < min(αc) then
10: Merge the most similar banks Pm and Pn

11: and the corresponding prototypes cm and cn
12: using Eq. 5
13: Update P := P ∪ xtj , c := c ∪ Îj
14: else
15: Merge Îj into Pm, where the corresponding
16: prototype cm is most similar to Îj
17: Select data in each bank by stj and fill the ∆Dk

t

18: return Selected target subset ∆Dk
t

frame xt
j , where Îj = ITj dj , and the domainness score of

target domain stj can be calculated by the designed domain
discriminator H described above. As summarized in Algo-
rithm 1, the basic idea of the diversity-based target sampling
strategy is to maintain a similarity bank, where all unlabeled
target data are clustered based on pairwise similarity of re-
weighted ROI features to ensure the diversity of selected
target data. In particular, we use cosine distance to measure
the similarity α and dynamically update the prototypes of
candidate ROI features using the following formula:

ĉ(Pm, Pn) =
num(Pm)× cm + num(Pn)× cn

num(Pm) + num(Pn)
, (5)

where cm, cn are the m-th and n-th prototypes assigned
according to the preset budget, meaning that each bud-
get is represented by one prototype. Pm and Pn denote
the similarity bank of the above m-th and n-th budget-
wise prototypes, which are used to buffer unlabeled frames,
and num(·) denotes the number of unlabeled frames in the
buffer. After Algorithm 1 is finished, to sample more di-
verse and representative frames from the target domain, we
select one unlabeled frame xtj with the top-1 domainness
score stj from each updated bank P, to form the full set of
all data for manual annotation.

3.3. Overall Objective and Bi-domain Sampling and
Training Strategy

Overall Objectives. The overall objective can be formu-
lated as follows:

Ldet = Ex∼D̃s∪D̃t
[Lrpn + Lrcnn + Lseg], (6)

where the definition of Lrpn, Lrcnn, Lseg follows Eq. 1.
Bi-domain Sampling and Training Strategy. To adapt the
detector from the source domain to the target domain, our
method includes four steps. 1) Pre-training on source do-
main: The detector is firstly pre-trained on Ds using Eq. 1
to ensure that the detector can learn sufficient knowledge
for model transfer. 2) Training the domain discriminator:
We freeze the parameters from the baseline detector while
training the designed domain discriminator using Ldom in
Eq. 4. 3) Active sampling source domain: In this step, we
select target-domain-like source data and fine-tune the de-
tector on D̃s to reduce the domain gap. 4) Active sampling
target domain: Based on the selected source data and the
fine-tuned detector, we further sample the most informative
target data and re-train the detector on both D̃s and D̃t.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on four popular au-
tonomous driving datasets: KITTI [8], Waymo [30],
nuScenes [1] and Lyft [12]. We consider four
cross-domain settings including cross-LiDAR-beam (i.e.
Waymo-to-nuScenes, nuScenes-to-KITTI), cross-country
(i.e. Waymo-to-KITTI), and cross-sensor scenarios (i.e.
Waymo-to-Lyft). Following previous domain adaptation
works [37, 43], we use the KITTI evaluation metric to per-
form all experiments on Car (Vehicle in Waymo) category.
Implementation Details. We evaluate the proposed Bi3D
on two widely-used detectors: PV-RCNN [26] and Voxel R-
CNN [5]. Following [37,43], we only use the coordinate en-
coding (x, y, z) of raw point cloud as the detector input, and
set the voxel size of both PV-RCNN and Voxel R-CNN to
(0.1m, 0.1m, 0.15m) on all datasets. In the stage of active
sampling source domain, we first select the target-domain-
like data from the source domain in the initial training epoch
and fine-tune the detector for the following 15 epochs. In
the stage of active sampling target domain, we mainly
consider the situation that the annotation budget B is equal
to 1% and 5%, respectively, which follows the standard ex-
perimental setting in the ADA task. Our method is imple-
mented using OpenPCDet [31].

4.2. Comparison Baselines

To verify the effectiveness of the proposed Bi3D, we de-
sign several baseline methods including both active learning
and active domain adaptation based methods.
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Task Method
PV-RCNN Voxel R-CNN

APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

Waymo→KITTI

Source Only 61.18 / 22.01 - 64.87 / 19.90 -
ST3D [43] 84.10 / 64.78 +82.45% / +70.71% 65.67 / 20.14 +03.26% / +00.38%
Ours (1%) 85.13 / 71.36 +86.15% / +81.58% 86.35 / 72.70 +87.42% / +83.36%

SN [36] 79.78 / 63.60 +66.91% / +68.76% 71.65 / 61.63 +27.55% / +65.88%
ST3D (w/ SN) [43] 86.65 / 76.86 +91.62% / +90.68% 80.23 / 68.98 +62.52% / +77.49%

CLUE (w/ SN, 1%) [17] 82.13 / 73.14 +75.36% / +84.53% 81.93 / 70.89 +69.43% / +80.50%
TQS (w/ SN, 1%) [6] 82.00 / 72.04 +74.89% / +82.77% 78.26 / 67.11 +54.50% / +74.53%

Ours (w/ SN, 1%) 87.12 / 78.03 +93.31% / +92.61% 88.09 / 79.14 +94.51% / +93.53%
Ours (w/ SN, 5%) 89.53 / 81.32 +102.64% / +97.39% 90.18 / 81.34 +103.01% / +97.00%

Oracle 88.98 / 82.50 - 89.44 / 83.24 -

Waymo→Lyft

Source Only 75.49 / 58.53 70.52 / 53.48 -
ST3D [43] 77.68 / 60.53 +19.96% / +15.20% 72.27 / 54.94 +15.97% / +21.22%
Ours (1%) 79.06 / 63.70 +32.54% / +39.29% 78.39 / 64.50 +71.81% / +160.17%

SN [36] 72.82 / 56.64 -24.34% / -14.36% 68.77 / 52.67 -15.97% / -11.77%
ST3D (w/ SN) [43] 74.95 / 58.54 -04.92% / +00.08% 69.91 / 54.23 -05.57% / +10.90%

CLUE (w/ SN, 1%) [17] 75.23 / 62.17 -02.37% / +27.66% 75.61 / 59.34 +46.44% / +85.17%
TQS (w/ SN, 1%) [6] 70.87 / 55.25 -42.11% / -24.92% 71.11 / 56.28 +05.38% / +40.70%

Ours (w/ SN, 1%) 79.07 / 63.74 +32.63% / +39.59% 77.00 / 61.23 +59.12% / +112.65%
Ours (w/ SN, 5%) 80.12 / 65.54 +42.21% / +53.27% 79.15 / 65.26 +78.74% / +171.22%

Oracle 86.46 / 71.69 - 81.48 / 60.36 -

Waymo→nuScenes

Source Only 34.50 / 21.47 - 32.58 / 16.53 -
ST3D [43] 36.42 / 22.99 +10.32% / +08.89% 34.68 / 17.17 +12.40% / +03.33%

LiDAR Distill [37] 43.31 / 25.63 +47.34% / +24.34% - -
Ours (1%) 45.52 / 30.75 +59.22% / +54.30% 44.86 / 29.52 +72.45% / +67.63%

SN [36] 34.22 / 22.29 -01.50% / +04.80% 29.43 / 19.21 -18.60% / +13.95%
ST3D (w/ SN) [43] 36.62 / 23.67 +11.39% / +12.87% 32.77 / 22.21 +01.12% / +29.57%

CLUE (w/ SN, 1%) [17] 38.18 / 26.96 +19.77% / +32.12% 37.27 / 25.12 +39.49% / +44.72%
TQS (w/ SN, 1%) [6] 35.47 / 25.00 +05.01% / +20.66% 36.38 / 24.18 +22.43% / +39.82%

Ours (w/ SN, 1%) 45.00 / 30.81 +56.42% / +54.65% 45.29 / 29.70 +75.03% / +68.56%
Ours (w/ SN, 5%) 48.03 / 32.02 +72.70% / +61.73% 47.02 / 31.23 +85.24% / +76.52%

Oracle 53.11 / 38.56 - 49.52 / 35.74 -

nuScenes→KITTI

Source Only 68.15 / 37.17 - 67.27 / 30.54 -
ST3D [43] 78.36 / 70.85 +49.02% / +74.30% 74.16 / 35.55 +31.08% / +09.51%
Ours (1%) 84.91 / 71.56 +80.64% / +75.87% 86.10 / 72.75 +84.93% / +80.08%

SN [36] 60.48 / 49.47 -36.82% / +27.13% 44.00 / 25.20 -104.96% / -10.13%
ST3D (w/ SN) [43] 84.29 / 72.94 +77.48% / +78.91% 52.44 / 20.99 -66.89% / -18.12%

CLUE (w/ SN, 1%) [17] 74.77 / 64.43 +37.18% / +60.14% 79.12 / 68.02 +53.45% / +71.12%
TQS (w/ SN, 1%) [6] 84.66 / 75.40 +79.26% / +84.34% 77.98 / 66.02 +48.31% / +67.32%

Ours (w/ SN, 1%) 87.00 / 77.55 +90.49% / +89.08% 87.33 / 77.24 +90.48% / +88.61%
Ours (w/ SN, 5%) 89.63 / 81.02 +103.12% / +96.73% 88.15 / 79.06 +94.18% / +92.07%

Oracle 88.98 / 82.50 - 89.44 / 83.24 -

Table 1. Results on different adaptation scenarios under 1% and 5% annotation budget. Following [37,43], we report APBEV and AP3D over
40 positions’ recall for the car category at IoU = 0.7. Source Only denotes that the pre-trained detector is directly evaluated on the target
domain, and Oracle represents the detection results obtained using the fully-annotated target domain. Closed Gap denotes the performance
gap closed by various methods along Source Only and Oracle results. The best adaptation results are marked in bold.

1) Random: We randomly select the target domain data for
performing the manual annotation.

2) Entropy [34]: By measuring the entropy of samples
from the target domain, we select the samples with rela-
tively high entropy scores, which can represent the sample-
level uncertainty predicted by a detector.

3) Committee [23]: By using multiple classifiers to predict
the categories of target samples, the samples with inconsis-
tent prediction scores along with all classifiers are selected.

4) CLUE [17]: CLUE is a representative work under ADA
setting, which proposes Clustering Uncertainty-weighted
Embeddings in order to select informative-and-diverse tar-
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get data by means of a re-weighted uncertainty clustering.
5) TQS [6]: TQS is a prior work to explore the transferable
criteria which are specially designed to mitigate the domain
gap. TQS picks up data by combining a series of trans-
ferable sampling strategies (such as committee, uncertainty,
and domainness) to reduce the sampling uncertainty.

4.3. Main Results
Comparison with 2D ADA works. To verify the effective-
ness of our Bi3D and ensure the fairness of experiments,
we first compare our method with two widely used 2D
ADA methods (i.e. CLUE and TQS) under the same cross-
domain setting. As shown in Table 1, it can be seen that
compared with 2D ADA methods, our Bi3D achieves bet-
ter results by a large margin on all cross-domain scenarios,
demonstrating the method’s scalability for 3D point cloud
detection tasks. Meanwhile, we can observe that 2D ADA
methods cannot achieve satisfactory results, and even fall
behind UDA methods (i.e. Waymo→KITTI on PV-RCNN).
A detailed analysis is described in Section 4.4.
Comparison with 3D UDA works. We deeply review the
cross-domain 3D object detection works [37, 43], and find
that previous works mainly focus on the study of UDA 3D
detection. To show the effectiveness of active learning, we
compare our Bi3D with these cross-domain 3D detection
works. For example, ST3D [43] uses self-training to it-
eratively improve the performance on the target domain,
LiDAR Distillation [37] generates the low-beam pseudo
point cloud and distills the knowledge from high-beam data,
which achieves state-of-the-art results on high-to-low beam
adaptation scenario. It can be seen from Table 1 that, the
Bi3D greatly reduces the performance gap between dif-
ferent domains, surpassing all state-of-the-art UDA 3DOD
methods. Note that the Bi3D largely improves the perfor-
mance on the difficult Waymo→nuScenes setting (APBEV:
36.42% → 45.52% compared to ST3D, and 43.31% →
45.52% compared to LiDAR Distillation, AP3D: 22.99%→
30.75% compared to ST3D, and 25.63% → 30.75% com-
pared to LiDAR Distillation). Besides, our experiments are
conducted under 1% target annotation budget, demonstrat-
ing that Bi3D can largely improve the cross-domain detec-
tion performance at a low annotation cost.
Comparison with 3D weakly-supervised DA works.
SN [36] is a typical weakly-supervised DA method, which
uses statistic-level normalization to reduce the domain dif-
ference caused by source-to-target object size variances.
We conduct experiments combining our method with SN.
The results are reported in Table 1, which show that
our method outperforms all methods with SN operation.
We find that the result can be further improved espe-
cially on cross-country adaptation setting (i.e. 71.56% →
77.55% on nuScenes→KITTI and 71.36% → 78.03% on
Waymo→KITTI). This is mainly because SN can reduce
the domain shift caused by object size variations and is ben-
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Figure 3. Results of various target annotation budgets.

eficial to pick up more target-domain-like source data.

4.4. Insightful Analyses

Results of Changing Target Domain Annotation Bud-
get. In this part, we compare our Bi3D with several typi-
cal active learning methods (i.e. query-by-committee [23]
and query-by-uncertainty [34]), and their results demon-
strate that Bi3D can consistently outperform all these meth-
ods. We also conduct experiments on nuScenes→KITTI
and Waymo→KITTI by changing the annotation budget.
As illustrated in Fig. 3, we plot the trend of APBEV at differ-
ent manual annotation budgets. It can be seen that our Bi3D
achieves a promising detection accuracy gain, even outper-
forming many active learning methods. Besides, with the
increase of the number of manually annotated target frames,
the model detection accuracy is constantly improved. Fur-
thermore, when the manually labeled target data reaches 5%
of the total number of unlabeled frames, Bi3D can greatly
improve the cross-domain detection accuracy of the base-
line detector, even surpassing the fully-supervised results
with 100% labeled target data.

As described above, we found that when 2D ADA works
(as shown in Table 1) and 2D active learning works (as illus-
trated in Fig. 3) are deployed to 3D cross-domain scenarios,
their results are unsatisfactory. Here, we analyze why these
methods are not applicable to the cross-domain 3DOD task.
We attribute the reason to the following two aspects. 1) 2D
Density vs. 3D Sparsity: Compared with 2D images, 3D
point cloud is extremely sparse, which makes Globel Aver-
age Pooling (GAP) based feature extractor not suitable for
3D scenes. As a result, directly leveraging CNN on highly
sparse feature maps cannot extract informative features. 2)
2D Diversity vs. 3D Correlation: Unlike 2D natural images
that have more diverse appearances, the point cloud objects
in autonomous driving are closely related, especially be-
tween adjacent frames in the same sequence. Thus, sim-
ply applying 2D ADA methods to 3DOD will yield similar
importance metric scores of candidate data, resulting in la-
beling redundancy.
Ablation Studies. The effectiveness of two key compo-
nents, including domainness-aware source sampling strat-
egy and diversity-based target sampling strategy, is verified
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Source Target SN
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

- - - 68.15 / 37.17 61.18 / 22.01
Ran. - % 58.02 / 31.09 57.49 / 8.78
Act. - % 73.90 / 43.02 68.27 / 28.53
Ran. - ! 70.13 / 58.80 71.23 / 56.20
Act. - ! 81.84 / 65.40 81.53 / 67.41
Ran. Ran. ! 84.42 / 75.12 85.48 / 75.89
Act. Ran. ! 85.02 / 75.43 85.70 / 76.12
Ran. Act. ! 86.53 / 76.54 86.12 / 76.92
Act. Act. % 84.91 / 71.56 85.13 / 71.36
Act. Act. ! 87.00 / 77.55 87.12 / 78.03

Table 2. Component-level ablation studies. Ran. represents ran-
dom sampling and Act. represents active sampling using our
method. The ablation studies are conducted under 1% target an-
notation budget on PV-RCNN.

Score Entropy Dom.
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

- - S 79.65 / 58.74 77.71 / 55.52
! - S 77.93 / 63.52 82.29 / 54.74
- ! S 78.90 / 60.02 79.79 / 58.43
! ! S 81.84 / 65.40 81.53 / 67.41
- - S+T 86.13 / 76.65 85.58 / 76.69
! - S+T 86.09 / 77.21 86.71 / 77.91
- ! S+T 86.39 / 76.82 85.91 / 77.96
! ! S+T 87.00 / 77.55 87.12 / 78.03

Table 3. Ablation study of foreground region-aware discriminator
under 1% target annotation budget. Score and Entropy in this table
denote that we employ the objectness and entropy evaluation met-
rics, respectively. S denotes that only the source domain is used
for the designed active sampling strategy and S+T represents our
Bi3D).

on nuScenes→KITTI and Waymo→KITTI settings. On
one hand, Table 2 indicates that the sampling strategy de-
signed for the source domain has a better performance than
the random sampling strategy. This is mainly due to that
we pick up a portion of frames whose distribution charac-
teristics are similar to the target domain. On the one hand,
the sampled source data is also beneficial to improve the
detector’s adaptability, further helping to select more rep-
resentative samples from the target domain, as verified by
comparing Source+Act and Source+Ran in Table 2. More-
over, Table 2 also shows that the designed diversity-based
target domain sampling strategy also can significantly boost
the model transferability between domains.

As mentioned in Section 3.2, we enhance the scene-level
foreground features by combining objectness and entropy
scores. In order to verify the necessity of such a design,
we conduct experiments by changing the input features of
the domain discriminator. It can be observed from Table 3
that, combining objectness and entropy scores achieves the
best target-domain accuracy in both cases of only sampling

Method
Source Target Avg.

APBEV / AP3D APBEV / AP3D APBEV / AP3D

Source Only 47.57 / 32.43 68.15 / 38.17 57.86 / 35.30
ST3D [43] 28.57 / 19.88 78.36 / 70.85 53.46 / 45.36

Ours 40.71 / 22.89 84.91 / 71.56 62.81 / 47.22

Table 4. Generalization ability of Bi3D. We report the results
tested on both source and target domains. Avg. denotes the av-
erage accuracy across two domains.

Method
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

ST3D [43] 84.29 / 72.94 86.65 / 76.86
Ours 87.00 / 77.55 87.12 / 78.03

Ours+ST3D [43] 89.28 / 79.69 87.83 / 81.23
Oracle 88.98 / 82.50 88.98 / 82.50

Table 5. The studies of combining Bi3D with UDA method under
1% target annotation budget on PV-RCNN.

source data, and sampling source and target data. This
shows that the objectness score and entropy score can pro-
vide the location information of the foreground and make
the model ignore the noisy background.

Bi3D for Enhancing 3DOD Generalization. Although do-
main adaptation tasks including UDA and ADA can achieve
higher detection accuracy on a new target domain, their de-
tection accuracy on the original source domain usually de-
grades after the domain adaptation process is finished. It
can be seen from Table 4 that, the source-domain perfor-
mance achieved by an adapted ST3D will cause a serious
performance drop. In contrast, since our Bi3D utilizes a
Bi-domain active sampling strategy to pick up both source
and target samples, the adapted detector can maintain a cer-
tain degree of transferability toward the original source do-
main. From Table 4, we can observe that compared with
ST3D, our model can obtain a better source domain perfor-
mance. This shows that our Bi3D can enhance the detec-
tor’s dataset-level generalization ability for both source and
target domains.

Combining with UDA Method. Current UDA works [43]
mainly leverage self-training to perform the pseudo-
labeling on the unlabeled target domain, which is orthog-
onal to our Bi3D. Therefore, we conduct the experiments
of combining our Bi3D and ST3D [43]. In particular, we
employ Bi3D to actively sample 1% target data to perform
the manual annotation, and utilize ST3D to pseudo-label the
remaining unlabeled target data. Then, we fine-tune the de-
tector using both annotated data and pseudo-labeled data.
It can be seen from Table 5 that, our Bi3D can be flexibly
combined with ST3D, significantly outperforming both the
Bi3D and ST3D methods.
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5. Conclusion
In this work, for the first time, we presented a Bi3D

framework, which develops a Bi-domain active sampling
approach to dynamically select important frames from both
source and target domains, achieving domain transfer at
a low data cost. Experimentally, Bi3D achieves consis-
tent accuracy gains on many cross-domain settings, e.g.,
for Waymo-to-KITTI setting, Bi3D re-trained on only 5%
target domain data (KITTI) outperforms the corresponding
baseline model trained using 100% labeled KITTI data.

Acknowledgement
This work is supported by National Natural Science

Foundation of China (No. U1909207 and 62071127), Zhe-
jiang Lab Project (No. 2021KH0AB05) and Science and
Technology Commission of Shanghai Municipality (grant
No. 22DZ1100102).

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 2, 5, 12, 13

[2] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017. 2

[3] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3339–3348,
2018. 1

[4] Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for
active learning. In Proceedings of the 25th international con-
ference on Machine learning, pages 208–215, 2008. 2

[5] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou,
Yanyong Zhang, and Houqiang Li. Voxel r-cnn: Towards
high performance voxel-based 3d object detection. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 1201–1209, 2021. 1, 2, 5

[6] Bo Fu, Zhangjie Cao, Jianmin Wang, and Mingsheng Long.
Transferable query selection for active domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7272–7281, 2021. 2,
3, 6, 7, 13, 15

[7] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 1

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012. 2, 5, 12,
13

[9] Alex Holub, Pietro Perona, and Michael C Burl. Entropy-
based active learning for object recognition. In 2008 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 1–8. IEEE, 2008. 3

[10] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Cross-domain weakly-supervised object de-
tection through progressive domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5001–5009, 2018. 1

[11] Ajay J Joshi, Fatih Porikli, and Nikolaos P Papanikolopou-
los. Scalable active learning for multiclass image classifi-
cation. IEEE transactions on pattern analysis and machine
intelligence, 34(11):2259–2273, 2012. 2

[12] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni,
A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S.
Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platin-
sky, W. Jiang, and V. Shet. Level 5 perception dataset 2020.
https://level-5.global/level5/data/, 2019.
5, 12, 13

[13] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697–12705, 2019. 1, 2

[14] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Unsupervised domain adaptation with residual trans-
fer networks. Advances in neural information processing
systems, 29, 2016. 1

[15] Zhipeng Luo, Zhongang Cai, Changqing Zhou, Gongjie
Zhang, Haiyu Zhao, Shuai Yi, Shijian Lu, Hongsheng
Li, Shanghang Zhang, and Ziwei Liu. Unsupervised do-
main adaptive 3d detection with multi-level consistency. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8866–8875, 2021. 1

[16] Munan Ning, Donghuan Lu, Dong Wei, Cheng Bian,
Chenglang Yuan, Shuang Yu, Kai Ma, and Yefeng Zheng.
Multi-anchor active domain adaptation for semantic segmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9112–9122, 2021. 2, 3

[17] Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko, and
Judy Hoffman. Active domain adaptation via clustering
uncertainty-weighted embeddings. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 8505–8514, 2021. 2, 3, 6, 13, 15

[18] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 918–927, 2018. 2

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2

[20] Can Qin, Haoxuan You, Lichen Wang, C-C Jay Kuo, and
Yun Fu. Pointdan: A multi-scale 3d domain adaption net-
work for point cloud representation. Advances in Neural In-
formation Processing Systems, 32, 2019. 1

9

https://level-5.global/level5/data/


[21] Zhicong Qiu, David J Miller, and George Kesidis. A
maximum entropy framework for semisupervised and active
learning with unknown and label-scarce classes. IEEE trans-
actions on neural networks and learning systems, 28(4):917–
933, 2016. 3
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Outline
Due to the eight-page limitation of the submission paper,

we provide more details and visualizations from the follow-
ing aspects:

• Sec. A: More details of the proposed Bi3D.
• Sec. B: Details of datasets.
• Sec. C: Implementation details for Bi3D and 2D

image-related ADA works.
• Sec. D: More experimental results.
• Sec. E: Qualitative results.

A. More details of Bi3D

A.1. Detailed Structure of Domain Discriminator

As mentioned in the Method Section in our main text,
we use a conventional convolution-based discriminator to
measure the domainness score of samples from source and
target domains. In particular, given a BEV feature map
f̂d
bev ∈ RC×H×W enhanced by objectness and entropy scores

from source or target domain, where d ∈ [s, t] denotes
source or target domain and H, W , C represent the chan-
nel, height and width of the feature map, respectively. As
shown in Fig. 4, we first use 5 layers convolution followed
by LeakyReLU to extract scene-level features and the fea-
tures are down-sampled by 32 times in this process. Then,
the Global Average Pooling (GAP) is utilized to extract the
scene-level vectors. Further, we use a single layer Multi-
Layer Perception (MLP) to obtain the domainness score of
each candidate frame.
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Figure 4. Detailed structure of domain discriminator. f̂s
bev and

f̂ t
bev denote enhanced foreground features from source domain and

target domain.

A.2. Algorithm of the Proposed Bi3D

In this Section, we show the detail training procedure of
the Bi3D in Algorithm 2.

Algorithm 2 Bi3D

1: Train the detector on train dataset Ds.
2: Train the domain discriminator on Ds and Dt.
3: Select target-domain-like source data D̃s by

domainness-aware source sampling strategy.
4: Fine-tune the detector on D̃s.
5: for current epoch < max epochs do
6: if current epoch in sample epochs then
7: Select diverse and representative target data
8: ∆Dt using diversity-based target sampling
9: strategy and update D̃t.

10: Train detector on D̃t and D̃s.

B. Datasets
KITTI. KITTI dataset [8] is one of the most popular
datasets for autonomous driving, which contains 7481 train-
ing samples and is divided into a train set with 3712 samples
and a validation set with 3769 samples. The point cloud
data is collected by a 64-beam LiDAR in Germany. Due to
only annotations of the field of view of the front (FOV) cam-
era is provided, we remove the points outside of the range
in the test phase.
Waymo. Waymo Open Dataset [30] is a large-scale au-
tonomous driving dataset which is composed of 1000 se-
quences and divided into a train set with 798 sequences
(∼1.5 million samples) and a validation set with 202 se-
quences (∼4 million samples). The Waymo dataset is gath-
ered in the USA by a 64-beam LiDAR with annotations in
full 360◦. We use one fifth data of Waymo train set when
Waymo is regarded to the source domain.
nuScenes. nuScnenes dataset [1] provides point cloud
data from 32-beam LiDAR collected from Singapore and
Boston, USA. It consists of 28130 training samples and
6019 validation samples. The data is obtained during dif-
ferent time in a day and different weathers.
Lyft. Lyft level 5 dataset [12] is composed of 18900 training
samples and 3780 validation samples, which are collected
in the USA. As mentioned in ST3D [43], the Lyft dataset
does not annotate objects on both sides of the road which
is different from other datasets and will cause the detection
accuracy degradation.

C. Implementation Details
C.1. More Bi3D Implementation Details

As shown in Table 6, the point cloud range varies
in different datasets, followed by ST3D [43], we align
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Dataset Point Could Range
KITTI [8] [0,−40,−3, 70.4, 40, 1]

Waymo [30] [−75.2,−75.2,−2, 75.2, 75.2, 4]
nuScenes [1] [−51.2,−51.2,−5.0, 51.2, 51.2, 3.0]

Lyft [12] [−80.0,−80.0,−5.0, 80.0, 80.0, 3.0]

Table 6. Point cloud range of different datasets.

Budget KITTI nuScenes Lyft
number

1%
18 140 94

epochs [0, 5] [0, 5] [0, 5]
number

5%
37 280 188

epochs [0, 2, 4, 6, 8] [0, 2, 4, 6, 8] [0, 2, 4, 6, 8]

Table 7. Details of target sample budget and sample epochs. Num-
ber denotes the sampling number per epoch.

the point cloud range with the Waymo dataset (i.e.,
[−75.2,−75.2,−2, 75.2, 75.2, 4]). In active sampling target
domain stage, when annotation budget B of the target do-
main is equal to 1%, we perform a two-round sampling pro-
cess. Besides, the sampling process will be performed 5
rounds, when annotation budget B is set to 5%. The sam-
ple number and sample epochs of the active sampling target
data is shown in Table 7. The widely-used data augmen-
tation methods (e.g., random world flip, random world ro-
tation, random world scaling) are also used in our experi-
ments.

C.2. Details about Reproduced 2D ADA Methods

TQS [6]. TQS consists of transferable committee, trans-
ferable uncertainty and transferable domainness which is
based on image-level features. In our reproduction, we ex-
tract the scene-level feature from BEV features using CNN
and use three classifier heads to construct the committee.
Following TQS [6], different from previous works using en-
tropy to evaluate the uncertainty, we calculate the the mar-
gin of objectness score and 0.5 which is also different from
the original TQS. This is because we only focus on a single
category and cannot use margin of the highest score and the
second-highest score. In addition, we calculate domainness
score by a domain discriminator and set µ as 0.75 and σ as
0.4, which is the same as TQS. In order to keep consistency
with TQS, we use source data and selected target data to
fine-tune the detector trained on the source domain.
CLUE [17]. CLUE uses uncertainty-weighted cluster to se-
lect target data. Following CLUE, we first obtain the uncer-
tainty of each frame by calculating the predictive entropy
of the proposals after NMS and then use the mean value of
the entropy to represent the frame-level uncertainty. Fur-
ther, weighted K-Means which is proposed by CLUE with
bk centroids is utilized to cluster, where bk denotes the an-
notation budget of the current sampling epoch.

The sampling number and sampling epochs are consis-
tent with our Bi3D, as shown in Table 7.

C.3. Details about reproduced 2D AL Methods

Query by Committee [23]. Committee-based methods of-
ten use multiple classifier heads with different initialization
to keep diversity from each other. We use two classifiers
with different initialization and calculate the distance of out-
put logits of two classifier heads and select the target data
which the two classifier heads most disagree.
Query by Uncertainty [34]. The most common method to
measure the uncertainty is to calculate the entropy. Here, we
calculate the entropy of the instance-level classifier score
of the proposals after NMS and use the mean value of the
entropy to represent the frame-level uncertainty.

The sampling number and sampling epochs are consis-
tent with our Bi3D, as shown in Table 7.

D. Experimental Results
D.1. Second-IOU Results

SECOND [41] is a widely used detector that greatly im-
proves the efficiency of the model by using sparse convo-
lution. Followed by [37, 43], we also conduct the experi-
ment on SECOND-IoU, where an extra IoU head is added
to SECOND. As shown in Table 8, the proposed Bi3D can
also achieve the best result compared to UDA methods by
only sampling 1% data from nuScenes. This shows our ap-
proach is applicable to multiple detectors.

Task Method APBEV / AP3D

Waymo→nuScenes

Source Only 32.91 / 17.24
SN 33.23 / 18.57

ST3D 35.92 / 20.19
Lidar Distill 40.66 / 22.86

Ours 42.15 / 26.24

Table 8. Results of Waymo→nuScenes adaptation task using
SECOND-IoU. Source Only means that the model trained on the
Waymo dataset is directly tested on nuScenes. We report APBEV

and AP3D over 40 recall positions of the car category at IoU = 0.7.

D.2. More Ablation Studies

Experiments on number of selected source data. In our
main text, the experimental results have shown the effec-
tiveness of our proposed domainness-aware source sam-
pling strategy. To fully explore the influence of the number
of selected source data, we conduct further experiments. As
shown in Table 9, selecting more source domain data de-
grades performance (e.g., select 25% source data) as the
domain gap between D̃s and Dt becomes larger, where D̃s

denotes the set of selected target-domain-like source data
and Dt represents target dataset.
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Number of Source APBEV / AP3D

Proportion

1% 86.95 / 77.86
2% 86.55 / 77.55
5% 86.66 / 77.59
10% 85.89 / 76.78
25% 85.24 / 75.68

Threshold > 0 87.00 / 77.58

Table 9. Experiments on number of selected source data. We con-
duct the experiments on Waymo→nuScenes adaptation task using
PV-RCNN. Number of Source indicates the number of selected
source data using domainness-aware source sample strategy. We
report APBEV and AP3D over 40 recall positions of the car category
at IoU = 0.7.

0% 1% 2% 5% 10%
Percent of selected frames 

35

40

45

50

55

60

65

70

75

80

n
u

S
ce

n
es

K
IT

T
I A

P
3d

Random Sampling
Committee Sampling
Entropy Sampling
Bi3D (Ours)
Oracle

(a) nuScenes→KITTI

0% 1% 2% 5% 10%
Percent of selected frames 

20

30

40

50

60

70

80

W
ay

m
o

K
IT

T
I A

P
3d

Random Sampling
Committee Sampling
Entropy Sampling
Bi3D (Ours)
Oracle

(b) Waymo→KITTI

Figure 5. Results of various target annotation budgets.

Varying Annotation Budget. We show the line chart of
APBEV at different target annotation budgets in our main
text. Here we show the trend of AP3D. As shown in Fig. 5,
similar to the results of APBEV, the proposed Bi3D achieves
a promising detection accuracy gain, even outperforming
many active learning methods. In addition, with the in-
crease of the number of manual annotated target frames, the
model detection accuracy is constantly improved.

D.3. Results with IoU=0.5

In this section, we show APBEV and AP3D results with
the IoU threshold 0.5. The results are shown in Table 10,
we can observe that our Bi3D can also achieve the best per-
formance on various cross-domain 3DOD tasks.

E. Qualitative Results
E.1. t-SNE results

To illustrate that Bi3D effectively samples target-like
source data, we first visualize the scene-level features of
source and target domains using t-SNE [33]. As shown in
Fig. 6, the selected source data distribute around the domain
boundaries between the source and target domains, mean-
ing that we sample target-domain-like source data. Besides,
the visualization of instance-level features from the target
domain is shown in Fig. 7, and we can observe that the
diverse target data are selected using Bi3D.
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Figure 6. t-SNE result of domainness-aware source sampling strat-
egy. The green squares represent data from source domain and red
squares represent target domain. We mark the selected source data
with ’s’.

(a) Round 1 (b) Round 2

Figure 7. t-SNE result of diversity-based target sampling strategy.
The purple squares represent selected target data. As mentioned in
C.1, we perform a two round sampling strategy. (a) and (b) are the
t-SNE results of each sampling round.

E.2. Visualization

To better verify the effectiveness of our Bi3D, we finally
provide some visualizations. Fig. 8 and Fig. 9 show qual-
itative results of Waymo-to-KITTI cross-domain scenario
equipped with PV-RCNN. Fig. 10 shows the qualitative re-
sults of Waymo-to-nuScenes cross-domain scenario. It can
be seen that our method can predict high-quality 3D bound-
ing boxes. Besides, due to the differences in the taxonomy
of different datasets (e.g., in the waymo dataset, cars, trucks
and buses are annotated as ’Vehicle’ and it is quite different
from nuScenes dataset, which only annotated cars as ’car’),
we can observe that the model detects trucks and buses in
nuScenes, which will reduce the detection accuracy.
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Task Method
PV-RCNN Voxel R-CNN

APBEV / AP3D APBEV / AP3D

Waymo→KITTI

Source Only 88.33 / 87.17 89.49 / 87.41
ST3D [43] 92.40 / 92.18 92.34 / 84.92

Ours 93.88 / 92.18 92.76 / 92.08
SN [36] 86.32 /85.72 82.00 / 81.57

ST3D (w/ SN) [43] 91.49 / 90.77 86.76 / 86.40
CLUE (w/ SN) [17] 90.42 / 88.87 88.13 / 88.00

TQS (w/ SN) [6] 88.17 /89.87 84.77 / 83.00
Ours (w/ SN) 92.48 / 92.31 94.31 / 94.16

Ours (w/ SN, 5%) 93.31 / 93.26 94.27 / 94.17
Oracle 94.08 / 92.28 95.54 / 95.50

Waymo→Lyft

Source Only 82.38 / 80.45 77.09 / 75.16
ST3D [43] 84.52 / 82.61 78.43 / 76.68

Ours 86.03 / 83.90 85.04 / 83.04
SN [36] 80.12 / 78.09 76.26 / 73.54

ST3D (w/ SN) [43] 82.21 / 81.70 77.46 / 75.08
CLUE (w/ SN) [17] 84.00 / 81.96 83.74 / 81.77

TQS (w/ SN) [6] 75.60 / 73.45 77.64 / 75.67
Ours (w/ SN) 86.03 / 83.86 86.19 / 83.70

Ours (w/ SN, 5%) 86.70 / 84.26 86.84 / 83.58
Oracle 92.38 / 91.87 90.19 / 87.18

Waymo→nuScenes

Source Only 40.48 / 36.95 31.62 / 28.25
ST3D [43] 40.90 / 38.67 44.06 / 34.62

Ours 52.99 / 49.17 52.39 / 48.83
SN [36] 40.27 / 36.59 33.99 / 31.23

ST3D (w/ SN) [43] 41.42 / 38.99 38.27 / 34.31
CLUE (w/ SN) [17] 43.79 / 40.80 42.67 / 39.87

TQS (w/ SN) [6] 41.10 / 38.01 38.87 / 36.38
Ours (w/ SN) 52.65 / 48.01 52.73 / 49.04

Ours (w/ SN, 5%) 55.63 / 51.78 53.01 / 49.63
Oracle 61.52 / 58.04 58.33 / 54.61

nuScenes→KITTI

Source Only 80.88 / 78.47 85.81 / 81.76
ST3D [43] 83.75 / 83.64 92.33 / 82.93

Ours 92.54 / 92.36 94.86 / 93.28
SN [36] 66.22 / 65.82 48.59 / 47.49

ST3D (w/ SN) [43] 90.47 / 90.25 80.08 / 78.51
CLUE (w/ SN) [17] 82.04 / 80.59 85.97 / 82.86

TQS (w/ SN) [6] 91.90 / 90.37 85.88 / 84.39
Ours (w/ SN) 92.93 / 92.74 93.47 / 93.32

Ours (w/ SN, 5%) 94.70 / 93.44 93.65 / 92.46
Oracle 94.97 / 94.85 95.54 / 95.50

Table 10. Results of different adaptation scenarios under 1% annotation budget. Following [37,43], we report APBEV and AP3D over recall
40 positions of the car category at IoU = 0.5. Source Only denotes that the pre-trained detector is directly evaluated on the target domain,
and Oracle represents that the detection results using the fully-annotated target domain. Closed Gap denotes the performance gap closed
by various approaches along Source Only and Oracle results. The best adaptation results are marked in bold.

15



Figure 8. Qualitative results of Waymo-to-KITTI cross-domain scenario. The green and blue bounding boxes represent groundtruths and
detector predictions respectively.

Figure 9. Qualitative results of Waymo-to-KITTI cross-domain scenario. We visualize the detection results in the target domain (KITTI).

Figure 10. Qualitative results of Waymo-to-nuScenes cross-domain scenario. We visualize the detection results in the target domain
(nuScenes).
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